Star number and star arboricity of a complete multigraph
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 3, page 961-967
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLin, Chiang, and Shyu, Tay-Woei. "Star number and star arboricity of a complete multigraph." Czechoslovak Mathematical Journal 56.3 (2006): 961-967. <http://eudml.org/doc/31082>.
@article{Lin2006,
abstract = {Let $G$ be a multigraph. The star number $\{\mathrm \{s\}\}(G)$ of $G$ is the minimum number of stars needed to decompose the edges of $G$. The star arboricity $\{\mathrm \{s\}a\}(G)$ of $G$ is the minimum number of star forests needed to decompose the edges of $G$. As usual $\lambda K_n$ denote the $\lambda $-fold complete graph on $n$ vertices (i.e., the multigraph on $n$ vertices such that there are $\lambda $ edges between every pair of vertices). In this paper, we prove that for $n \ge 2$\[ \begin\{aligned\} \{\mathrm \{s\}\}(\lambda K\_n)&= \left\rbrace \begin\{array\}\{ll\}\frac\{1\}\{2\}\lambda n&\text\{if\}\ \lambda \ \text\{is even\}, \frac\{1\}\{2\}(\lambda +1)n-1&\text\{if\}\ \lambda \ \text\{is odd,\} \end\{array\}\right. \{\vspace\{2.0pt\}\} \{\mathrm \{s\}a\}(\lambda K\_n)&= \left\rbrace \begin\{array\}\{ll\}\lceil \frac\{1\}\{2\}\lambda n \rceil &\text\{if\}\ \lambda \ \text\{is odd\},\ n = 2, 3 \ \text\{or\}\ \lambda \ \text\{is even\}, \lceil \frac\{1\}\{2\}\lambda n \rceil +1 &\text\{if\}\ \lambda \ \text\{is odd\},\ n\ge 4. \end\{array\}\right. \end\{aligned\} \qquad \mathrm \{(1,2)\}\]},
author = {Lin, Chiang, Shyu, Tay-Woei},
journal = {Czechoslovak Mathematical Journal},
keywords = {decomposition; star arboricity; star forest; complete multigraph; decomposition; star arboricity; star forest; complete multigraph},
language = {eng},
number = {3},
pages = {961-967},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Star number and star arboricity of a complete multigraph},
url = {http://eudml.org/doc/31082},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Lin, Chiang
AU - Shyu, Tay-Woei
TI - Star number and star arboricity of a complete multigraph
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 961
EP - 967
AB - Let $G$ be a multigraph. The star number ${\mathrm {s}}(G)$ of $G$ is the minimum number of stars needed to decompose the edges of $G$. The star arboricity ${\mathrm {s}a}(G)$ of $G$ is the minimum number of star forests needed to decompose the edges of $G$. As usual $\lambda K_n$ denote the $\lambda $-fold complete graph on $n$ vertices (i.e., the multigraph on $n$ vertices such that there are $\lambda $ edges between every pair of vertices). In this paper, we prove that for $n \ge 2$\[ \begin{aligned} {\mathrm {s}}(\lambda K_n)&= \left\rbrace \begin{array}{ll}\frac{1}{2}\lambda n&\text{if}\ \lambda \ \text{is even}, \frac{1}{2}(\lambda +1)n-1&\text{if}\ \lambda \ \text{is odd,} \end{array}\right. {\vspace{2.0pt}} {\mathrm {s}a}(\lambda K_n)&= \left\rbrace \begin{array}{ll}\lceil \frac{1}{2}\lambda n \rceil &\text{if}\ \lambda \ \text{is odd},\ n = 2, 3 \ \text{or}\ \lambda \ \text{is even}, \lceil \frac{1}{2}\lambda n \rceil +1 &\text{if}\ \lambda \ \text{is odd},\ n\ge 4. \end{array}\right. \end{aligned} \qquad \mathrm {(1,2)}\]
LA - eng
KW - decomposition; star arboricity; star forest; complete multigraph; decomposition; star arboricity; star forest; complete multigraph
UR - http://eudml.org/doc/31082
ER -
References
top- Path factors of a graph, In: Graphs and Applications. Proceedings of the first Cororado Symposium on Graph Theory, F. Harary, J. Maybee (eds.), , , 1982, pp. 1–21. (1982) MR0778395
- 10.1016/0012-365X(89)90073-3, Discrete Math. 75 (1989), 11–22. (1989) MR1001381DOI10.1016/0012-365X(89)90073-3
- 10.1016/0012-365X(90)90142-5, Discrete Math. 81 (1990), 115–122. (1990) Zbl0737.05038MR1054968DOI10.1016/0012-365X(90)90142-5
- Extremal Graph Theory, Academic Press, New York, 1978. (1978) MR0506522
- Graph Theory with Applications, North Holland, New York, 1976. (1976) MR0411988
- 10.1016/0012-365X(86)90190-1, Discrete Math. 58 (1986), 93–95. (1986) MR0820842DOI10.1016/0012-365X(86)90190-1
- The star arboricity of complete bipartite graphs, Graph Theory, Combinatorics and Applications 1 (1988), 389–396. (1988) MR1170792
- On independence numbers of the Cartesian product of graphs, ARS Combin. 43 (1996), 149–157. (1996) MR1415983
- 10.1016/0012-365X(94)00313-8, Discrete Math. 149 (1996), 93–98. (1996) MR1375101DOI10.1016/0012-365X(94)00313-8
- Independence in direct-product graphs, ARS Combin. 50 (1998), 53–63. (1998) MR1670588
- Some decomposition invariants of crowns, ARS Combin. 66 (2003), 33–48. (2003) MR1961473
- Isomorphic star decomposition of multicrowns and the power of cycles, ARS Combin. 53 (1999), 249–256. (1999) MR1724509
- 10.1137/S0895480198342838, SIAM J. Discrete Math. 12 (1999), 491–499. (1999) MR1720404DOI10.1137/S0895480198342838
- Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964), 12. (1964) Zbl0119.38805MR0161333
- Decomposing graphs into forests of stars, Congr. Numer. 54 (1986), 73–86. (1986) Zbl0646.05022MR0885263
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.