On weak-open π -images of metric spaces

Zhaowen Li

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 3, page 1011-1018
  • ISSN: 0011-4642

Abstract

top
In this paper, we give some characterizations of metric spaces under weak-open π -mappings, which prove that a space is g -developable (or Cauchy) if and only if it is a weak-open π -image of a metric space.

How to cite

top

Li, Zhaowen. "On weak-open $\pi $-images of metric spaces." Czechoslovak Mathematical Journal 56.3 (2006): 1011-1018. <http://eudml.org/doc/31087>.

@article{Li2006,
abstract = {In this paper, we give some characterizations of metric spaces under weak-open $\pi $-mappings, which prove that a space is $g$-developable (or Cauchy) if and only if it is a weak-open $\pi $-image of a metric space.},
author = {Li, Zhaowen},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak-open mappings; $\pi $-mappings; $g$-developable spaces; Cauchy spaces; cs-covers; sn-covers; weak-developments; point-star networks; weak-open mappings; -mappings; -developable spaces; Cauchy spaces},
language = {eng},
number = {3},
pages = {1011-1018},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weak-open $\pi $-images of metric spaces},
url = {http://eudml.org/doc/31087},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Li, Zhaowen
TI - On weak-open $\pi $-images of metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 1011
EP - 1018
AB - In this paper, we give some characterizations of metric spaces under weak-open $\pi $-mappings, which prove that a space is $g$-developable (or Cauchy) if and only if it is a weak-open $\pi $-image of a metric space.
LA - eng
KW - weak-open mappings; $\pi $-mappings; $g$-developable spaces; Cauchy spaces; cs-covers; sn-covers; weak-developments; point-star networks; weak-open mappings; -mappings; -developable spaces; Cauchy spaces
UR - http://eudml.org/doc/31087
ER -

References

top
  1. 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1996), 115–162. (1996) MR0227950DOI10.1070/RM1966v021n04ABEH004169
  2. Axioms of countability of continuous mappings, Bull. Pol. Acad. Math. 8 (1960), 127–133. (1960) MR0116314
  3. On defining a space by a weak-base, Pacific J. Math. 52 (1974), 233–245. (1974) Zbl0285.54022MR0350706
  4. Characterizations of certain g -first countable spaces, Adv. Math. 29 (2000), 61–64. (2000) Zbl0999.54010MR1769127
  5. Symmetric spaces, g -developable space and g -metrizable spaces, Math. Japonica 36 (1991), 71–84. (1991) MR1093356
  6. The condition of metrizability of topological spaces and the axiom of symmetry, Mat. Sb. 3 (1938), 663–672. (1938) 
  7. 10.2140/pjm.1976.65.113, Pacific J.  Math. 65 (1976), 113–118. (1976) Zbl0359.54022MR0423307DOI10.2140/pjm.1976.65.113
  8. 10.4064/fm-57-1-107-115, Fund. Math. 57 (1965), 107–115. (1965) Zbl0132.17802MR0180954DOI10.4064/fm-57-1-107-115
  9. Generalized Metric Spaces and Mappings, Chinese Scientific Publ., Beijing, 1995. (1995) 
  10. On sequence-covering s -mappings, Adv. Math. 25 (1996), 548–551. (1996) Zbl0864.54026MR1453163
  11. On sequence-covering π -mappings, Acta Math. Sinica 45 (2002), 1157–1164. (2002) MR1959486
  12. 10.4064/fm-57-1-91-96, Fund. Math. 57 (1965), 91–96. (1965) Zbl0134.41802MR0179763DOI10.4064/fm-57-1-91-96
  13. On a new class of spaces and some problems of symmetrizability theory, Soviet Math. Dokl. 10 (1969), 845–848. (1969) Zbl0202.53702
  14. 10.1090/S0002-9939-1972-0290328-3, Proc. Amer. Math. Soc. 33 (1972), 161–164. (1972) Zbl0233.54015MR0290328DOI10.1090/S0002-9939-1972-0290328-3
  15. 10.1016/S0166-8641(01)00145-6, Topology Appl. 122 (2002), 237–252. (2002) MR1919303DOI10.1016/S0166-8641(01)00145-6
  16. Generalized metric spaces, In: Handbook of Set-theoretic Topology, K. Kunen, J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, pp. 423–501. (1984) Zbl0555.54015MR0776629
  17. Certain covering-maps and k -networks, and related matters, Topology Proc. 27 (2003), 317–334. (2003) Zbl1075.54010MR2048941
  18. 10.1023/B:CMAJ.0000042377.80659.fb, Czechoslovak Math.  J. 54 (2004), 393–400. (2004) Zbl1080.54509MR2059259DOI10.1023/B:CMAJ.0000042377.80659.fb

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.