On Hong’s conjecture for power LCM matrices
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 253-268
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCao, Wei. "On Hong’s conjecture for power LCM matrices." Czechoslovak Mathematical Journal 57.1 (2007): 253-268. <http://eudml.org/doc/31128>.
@article{Cao2007,
abstract = {A set $\mathcal \{S\}=\lbrace x_1,\ldots ,x_n\rbrace $ of $n$ distinct positive integers is said to be gcd-closed if $(x_\{i\},x_\{j\})\in \mathcal \{S\}$ for all $1\le i,j\le n $. Shaofang Hong conjectured in 2002 that for a given positive integer $t$ there is a positive integer $k(t)$ depending only on $t$, such that if $n\le k(t)$, then the power LCM matrix $([x_i,x_j]^t)$ defined on any gcd-closed set $\mathcal \{S\}=\lbrace x_1,\ldots ,x_n\rbrace $ is nonsingular, but for $n\ge k(t)+1$, there exists a gcd-closed set $\mathcal \{S\}=\lbrace x_1,\ldots ,x_n\rbrace $ such that the power LCM matrix $([x_i,x_j]^t)$ on $\mathcal \{S\}$ is singular. In 1996, Hong proved $k(1)=7$ and noted $k(t)\ge 7$ for all $t\ge 2$. This paper develops Hong’s method and provides a new idea to calculate the determinant of the LCM matrix on a gcd-closed set and proves that $k(t)\ge 8$ for all $t\ge 2$. We further prove that $k(t)\ge 9$ iff a special Diophantine equation, which we call the LCM equation, has no $t$-th power solution and conjecture that $k(t)=8$ for all $t\ge 2$, namely, the LCM equation has $t$-th power solution for all $t\ge 2$.},
author = {Cao, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {gcd-closed set; greatest-type divisor(GTD); maximal gcd-fixed set(MGFS); least common multiple matrix; power LCM matrix; nonsingularity; gcd-closed set; greatest-type divisor (GTD); maximal gcd-fixed set (MGFS)},
language = {eng},
number = {1},
pages = {253-268},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hong’s conjecture for power LCM matrices},
url = {http://eudml.org/doc/31128},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Cao, Wei
TI - On Hong’s conjecture for power LCM matrices
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 253
EP - 268
AB - A set $\mathcal {S}=\lbrace x_1,\ldots ,x_n\rbrace $ of $n$ distinct positive integers is said to be gcd-closed if $(x_{i},x_{j})\in \mathcal {S}$ for all $1\le i,j\le n $. Shaofang Hong conjectured in 2002 that for a given positive integer $t$ there is a positive integer $k(t)$ depending only on $t$, such that if $n\le k(t)$, then the power LCM matrix $([x_i,x_j]^t)$ defined on any gcd-closed set $\mathcal {S}=\lbrace x_1,\ldots ,x_n\rbrace $ is nonsingular, but for $n\ge k(t)+1$, there exists a gcd-closed set $\mathcal {S}=\lbrace x_1,\ldots ,x_n\rbrace $ such that the power LCM matrix $([x_i,x_j]^t)$ on $\mathcal {S}$ is singular. In 1996, Hong proved $k(1)=7$ and noted $k(t)\ge 7$ for all $t\ge 2$. This paper develops Hong’s method and provides a new idea to calculate the determinant of the LCM matrix on a gcd-closed set and proves that $k(t)\ge 8$ for all $t\ge 2$. We further prove that $k(t)\ge 9$ iff a special Diophantine equation, which we call the LCM equation, has no $t$-th power solution and conjecture that $k(t)=8$ for all $t\ge 2$, namely, the LCM equation has $t$-th power solution for all $t\ge 2$.
LA - eng
KW - gcd-closed set; greatest-type divisor(GTD); maximal gcd-fixed set(MGFS); least common multiple matrix; power LCM matrix; nonsingularity; gcd-closed set; greatest-type divisor (GTD); maximal gcd-fixed set (MGFS)
UR - http://eudml.org/doc/31128
ER -
References
top- Reciprocal GCD matrices and LCM matrices, Fibonacci Quart. 29 (1991), 271–274. (1991) Zbl0738.11026MR1114893
- 10.1016/0024-3795(89)90572-7, Linear Algebra Appl. 118 (1989), 69–76. (1989) MR0995366DOI10.1016/0024-3795(89)90572-7
- 10.1006/jnth.1993.1083, J. Number Theory 45 (1993), 367–376. (1993) MR1247390DOI10.1006/jnth.1993.1083
- 10.1016/0024-3795(92)90042-9, Linear Algebra Appl. 174 (1992), 65–74. (1992) MR1176451DOI10.1016/0024-3795(92)90042-9
- Matrices associated with classes of multiplicative functions, Linear Algebra Appl. 216 (1995), 267–275. (1995) MR1319990
- GCD and LCM power matrices, Fibonacci Quart. 34 (1996), 290–297. (1996) MR1394756
- On Smith’s determinant, Linear Algebra Appl. 258 (1997), 251–269. (1997) MR1444107
- LCM matrix on an r-fold gcd-closed set, J. Sichuan Univ. Nat. Sci. Ed. 33 (1996), 650–657. (1996) Zbl0869.11021MR1440627
- On Bourque-Ligh conjecture of LCM matrices, Adv. in Math. (China) 25 (1996), 566–568. (1996) Zbl0869.11022MR1453166
- On LCM matrices on GCD-closed sets, Southeast Asian Bull. Math. 22 (1998), 381–384. (1998) Zbl0936.15011MR1811182
- 10.1006/jabr.1998.7844, J. Algebra 218 (1999), 216–228. (1999) Zbl1015.11007MR1704684DOI10.1006/jabr.1998.7844
- 10.4064/aa101-4-2, Acta Arith. 101 (2002), 321–332. (2002) Zbl0987.11014MR1880046DOI10.4064/aa101-4-2
- On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl. 345 (2002), 225–233. (2002) Zbl0995.15006MR1883274
- 10.4064/aa111-2-5, Acta Arith. 111 (2004), 165–177. (2004) Zbl1047.11022MR2039420DOI10.4064/aa111-2-5
- 10.1016/j.jalgebra.2004.07.026, J. Algebra 281 (2004), 1–14. (2004) Zbl1064.11024MR2091959DOI10.1016/j.jalgebra.2004.07.026
- 10.1016/j.jnt.2005.03.004, J. Number Theory 113 (2005), 1–9. (2005) Zbl1080.11022MR2141756DOI10.1016/j.jnt.2005.03.004
- On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875–1876), 2080–212. (1875–1876)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.