A Korovkin type approximation theorems via -convergence

Oktay Duman

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 367-375
  • ISSN: 0011-4642

Abstract

top
Using the concept of -convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.

How to cite

top

Duman, Oktay. "A Korovkin type approximation theorems via $\mathcal {I}$-convergence." Czechoslovak Mathematical Journal 57.1 (2007): 367-375. <http://eudml.org/doc/31134>.

@article{Duman2007,
abstract = {Using the concept of $\mathcal \{I\}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.},
author = {Duman, Oktay},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\mathcal \{I\}$-convergence; positive linear operator; the classical Korovkin theorem; positive linear operator; the classical Korovkin theorem},
language = {eng},
number = {1},
pages = {367-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Korovkin type approximation theorems via $\mathcal \{I\}$-convergence},
url = {http://eudml.org/doc/31134},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Duman, Oktay
TI - A Korovkin type approximation theorems via $\mathcal {I}$-convergence
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 367
EP - 375
AB - Using the concept of $\mathcal {I}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.
LA - eng
KW - $\mathcal {I}$-convergence; positive linear operator; the classical Korovkin theorem; positive linear operator; the classical Korovkin theorem
UR - http://eudml.org/doc/31134
ER -

References

top
  1. Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials, Proceedings of the Conference of Canadian Math. Soc. 3 (1983), 5–17. (1983) MR0729319
  2. Summability of Hermite-Fejer interpolation for functions of bounded variation, J.  Nat. Sci. Math. 32 (1992), 5–10. (1992) 
  3. 10.4064/fm-13-1-62-72, Fund. Math. 13 (1929), 62–72. (1929) DOI10.4064/fm-13-1-62-72
  4. 10.4153/CMB-1989-029-3, Canad. Math. Bull. 32 (1989), 194–198. (1989) Zbl0693.40007MR1006746DOI10.4153/CMB-1989-029-3
  5. 10.4064/sm161-2-6, Stud. Math. 161 (2004), 187–197. (2004) MR2033235DOI10.4064/sm161-2-6
  6. A -statistical convergence of approximating operators, Math. Inequal. Appl. 4 (2003), 689–699. (2003) MR2013529
  7. 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
  8. 10.2140/pjm.1981.95.293, Pacific J.  Math. 95 (1981), 293–305. (1981) MR0632187DOI10.2140/pjm.1981.95.293
  9. On statistical convergence, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582
  10. 10.1524/anly.1991.11.1.59, Analysis 11 (1991), 59–66. (1991) MR1113068DOI10.1524/anly.1991.11.1.59
  11. Divergent Series, Oxford Univ. Press, London, 1949. (1949) Zbl0032.05801MR0030620
  12. 10.1006/jath.1996.3113, J.  Approximation Theory 92 (1998), 22–37. (1998) MR1492856DOI10.1006/jath.1996.3113
  13. 10.1524/anly.1993.13.12.77, Analysis 13 (1993), 77–83. (1993) Zbl0801.40005MR1245744DOI10.1524/anly.1993.13.12.77
  14. Linear Operators and Theory of Approximation, Hindustan Publ. Comp., Delhi, 1960. (1960) MR0150565
  15. I -convergence, Real Anal. Exchange 26 (2000/01), 669–685. (2000/01) MR1844385
  16. Topologie  I, PWN, Warszawa, 1958. (1958) 
  17. 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
  18. An Introduction to the Theory of Numbers. 5th Edition, Wiley, New York, 1991. (1991) MR1083765
  19. Real Analysis. 2nd edition, Macmillan Publ., New York, 1968. (1968) MR1013117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.