A Korovkin type approximation theorems via -convergence
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 367-375
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDuman, Oktay. "A Korovkin type approximation theorems via $\mathcal {I}$-convergence." Czechoslovak Mathematical Journal 57.1 (2007): 367-375. <http://eudml.org/doc/31134>.
@article{Duman2007,
abstract = {Using the concept of $\mathcal \{I\}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.},
author = {Duman, Oktay},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\mathcal \{I\}$-convergence; positive linear operator; the classical Korovkin theorem; positive linear operator; the classical Korovkin theorem},
language = {eng},
number = {1},
pages = {367-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Korovkin type approximation theorems via $\mathcal \{I\}$-convergence},
url = {http://eudml.org/doc/31134},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Duman, Oktay
TI - A Korovkin type approximation theorems via $\mathcal {I}$-convergence
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 367
EP - 375
AB - Using the concept of $\mathcal {I}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.
LA - eng
KW - $\mathcal {I}$-convergence; positive linear operator; the classical Korovkin theorem; positive linear operator; the classical Korovkin theorem
UR - http://eudml.org/doc/31134
ER -
References
top- Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials, Proceedings of the Conference of Canadian Math. Soc. 3 (1983), 5–17. (1983) MR0729319
- Summability of Hermite-Fejer interpolation for functions of bounded variation, J. Nat. Sci. Math. 32 (1992), 5–10. (1992)
- 10.4064/fm-13-1-62-72, Fund. Math. 13 (1929), 62–72. (1929) DOI10.4064/fm-13-1-62-72
- 10.4153/CMB-1989-029-3, Canad. Math. Bull. 32 (1989), 194–198. (1989) Zbl0693.40007MR1006746DOI10.4153/CMB-1989-029-3
- 10.4064/sm161-2-6, Stud. Math. 161 (2004), 187–197. (2004) MR2033235DOI10.4064/sm161-2-6
- -statistical convergence of approximating operators, Math. Inequal. Appl. 4 (2003), 689–699. (2003) MR2013529
- 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- 10.2140/pjm.1981.95.293, Pacific J. Math. 95 (1981), 293–305. (1981) MR0632187DOI10.2140/pjm.1981.95.293
- On statistical convergence, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582
- 10.1524/anly.1991.11.1.59, Analysis 11 (1991), 59–66. (1991) MR1113068DOI10.1524/anly.1991.11.1.59
- Divergent Series, Oxford Univ. Press, London, 1949. (1949) Zbl0032.05801MR0030620
- 10.1006/jath.1996.3113, J. Approximation Theory 92 (1998), 22–37. (1998) MR1492856DOI10.1006/jath.1996.3113
- 10.1524/anly.1993.13.12.77, Analysis 13 (1993), 77–83. (1993) Zbl0801.40005MR1245744DOI10.1524/anly.1993.13.12.77
- Linear Operators and Theory of Approximation, Hindustan Publ. Comp., Delhi, 1960. (1960) MR0150565
- -convergence, Real Anal. Exchange 26 (2000/01), 669–685. (2000/01) MR1844385
- Topologie I, PWN, Warszawa, 1958. (1958)
- 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
- An Introduction to the Theory of Numbers. 5th Edition, Wiley, New York, 1991. (1991) MR1083765
- Real Analysis. 2nd edition, Macmillan Publ., New York, 1968. (1968) MR1013117
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.