I-convergence theorems for a class of k-positive linear operators
Open Mathematics (2009)
- Volume: 7, Issue: 2, page 357-362
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMehmet Özarslan. "I-convergence theorems for a class of k-positive linear operators." Open Mathematics 7.2 (2009): 357-362. <http://eudml.org/doc/269035>.
@article{MehmetÖzarslan2009,
abstract = {In this paper, we obtain some approximation theorems for k- positive linear operators defined on the space of analytical functions on the unit disc, via I-convergence. Some concluding remarks which includes A-statistical convergence are also given.},
author = {Mehmet Özarslan},
journal = {Open Mathematics},
keywords = {A-statistical convergence; I-convergence; k-positive linear operators; -statistical convergence; -convergence; -positive linear operators},
language = {eng},
number = {2},
pages = {357-362},
title = {I-convergence theorems for a class of k-positive linear operators},
url = {http://eudml.org/doc/269035},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Mehmet Özarslan
TI - I-convergence theorems for a class of k-positive linear operators
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 357
EP - 362
AB - In this paper, we obtain some approximation theorems for k- positive linear operators defined on the space of analytical functions on the unit disc, via I-convergence. Some concluding remarks which includes A-statistical convergence are also given.
LA - eng
KW - A-statistical convergence; I-convergence; k-positive linear operators; -statistical convergence; -convergence; -positive linear operators
UR - http://eudml.org/doc/269035
ER -
References
top- [1] Devore R.A., Lorentz G.G., Constructive approximation, Springer-Verlag, Berlin, 1993 Zbl0797.41016
- [2] Duman O., A Korovkin type approximation theorems via I-convergence, Czechoslovak Math. J., 2007, 57, 367–375 http://dx.doi.org/10.1007/s10587-007-0065-5[Crossref][WoS] Zbl1174.41004
- [3] Duman O., Statistical approximation theorems by k-positive linear operators, Arch. Math. (Basel), 2006, 86, 569–576 [Crossref] Zbl1100.41012
- [4] Fast H., Sur la convergence statistique, Colloquium Math., 1951, 2, 241–244 Zbl0044.33605
- [5] Freedman A.R., Sember J.J., Densities and summability, Pacific J. Math., 1981, 95, 293–305 Zbl0504.40002
- [6] Fridy J.A., On statistical convergence, Analysis, 1985, 5, 301–313 [Crossref] Zbl0588.40001
- [7] Fridy J.A., Miller H.I., A matrix characterization of statistical convergence, Analysis, 1991, 11, 59–66 [Crossref] Zbl0727.40001
- [8] Fridy J.A., Orhan C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 1997, 125, 3625–3631 http://dx.doi.org/10.1090/S0002-9939-97-04000-8[Crossref] Zbl0883.40003
- [9] Gadjiev A.D., Linear k-positive operators in a space of regular functions and theorems of P. P. Korovkin type, Izv. Akad. Nauk Azerbaĭdžan. SSR Ser. Fiz.-Tehn. Mat. Nauk, 1974, 5, 49–53 (Russian)
- [10] Kolk E., The statistical convergence in Banach spaces, Tartu Ül. Toimetised No. 928, 1991, 41–52
- [11] Kostyrko P., Šalát T., Wilczyński W., I-convergence, Real Anal. Exchange, 2000/2001, 26, 669–685
- [12] Kostyrko P., Mačaj M., Šalát T., Sleziak M., I-convergence and extremal I-limit points, Math. Slovaca, 2005, 55, 443–464 Zbl1113.40001
- [13] Miller H.I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 1995, 347, 1811–1819 http://dx.doi.org/10.2307/2154976[Crossref] Zbl0830.40002
- [14] Özarslan M.A., Aktuğlu H., Local approximation properties of certain class of linear positive operators via I-convergence, Cent. Eur. J. Math., 2008, 6, 281–286 http://dx.doi.org/10.2478/s11533-008-0125-6[Crossref][WoS] Zbl1148.41004
- [15] Steinhaus H., Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 1951, 2, 73–74
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.