# Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers

• Volume: 57, Issue: 1, page 447-463
• ISSN: 0011-4642

top

## Abstract

top
Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U\left(P,Q\right)$ such that the rank of $N$ in $U\left(P,Q\right)$ is exactly $\left(N-\epsilon \left(N\right)\right)/d$, where $\epsilon$ is the signature of $U\left(P,Q\right)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.

## How to cite

top

Carlip, Walter, and Somer, Lawrence. "Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers." Czechoslovak Mathematical Journal 57.1 (2007): 447-463. <http://eudml.org/doc/31141>.

@article{Carlip2007,
abstract = {Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon$ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.},
author = {Carlip, Walter, Somer, Lawrence},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lucas; Fibonacci; pseudoprime; Fermat; Fibonacci; pseudoprime},
language = {eng},
number = {1},
pages = {447-463},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers},
url = {http://eudml.org/doc/31141},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Carlip, Walter
AU - Somer, Lawrence
TI - Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 447
EP - 463
AB - Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon$ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.
LA - eng
KW - Lucas; Fibonacci; pseudoprime; Fermat; Fibonacci; pseudoprime
UR - http://eudml.org/doc/31141
ER -

## References

top
1. 10.1090/S0025-5718-1980-0583518-6, Math. Comput. 35 (1980), 1391–1417. (1980) MR0583518DOI10.1090/S0025-5718-1980-0583518-6
2. New primality criteria and factorizations of  ${2}^{m}±1$, Math. Comput. 29 (1975), 620–647. (1975) MR0384673
3. Pseudoprimes, perfect numbers, and a problem of Lehmer, Fibonacci Quart. 36 (1998), 361–371. (1998) MR1640372
4. Primitive Lucas $d$-pseudoprimes and Carmichael-Lucas numbers, Colloq. Math (to appear). (to appear) MR2291618
5. Bounds for frequencies of residues of regular second-order recurrences modulo ${p}^{r}$, In: Number Theory in Progress, Vol.  2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719. (1999) MR1689539
6. On the numerical factors of the arithmetic forms ${\alpha }^{n}±{\beta }^{n}$, Ann. of Math. (2) 15 (1913), 30–70. (1913) MR1502458
7. Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184–240, 289–321. (French) (1878) MR1505176
8. The New Book of Prime Number Records, Springer-Verlag, New York, 1996. (1996) Zbl0856.11001MR1377060
9. Lure of the Integers, Mathematical Association of America, Washington, DC, 1992. (1992) MR1189138
10. On Lucas $d$-pseudoprimes, In: Applications of Fibonacci Numbers, Vol.  7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375. (1998) Zbl0919.11008MR1638463
11. 10.4153/CMB-1977-025-9, Can. Math. Bull. 20 (1977), 133–143. (1977) Zbl0368.10011MR0447099DOI10.4153/CMB-1977-025-9

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.