Square-free Lucas -pseudoprimes and Carmichael-Lucas numbers
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 447-463
 - ISSN: 0011-4642
 
Access Full Article
topAbstract
topHow to cite
topCarlip, Walter, and Somer, Lawrence. "Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers." Czechoslovak Mathematical Journal 57.1 (2007): 447-463. <http://eudml.org/doc/31141>.
@article{Carlip2007,
	abstract = {Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.},
	author = {Carlip, Walter, Somer, Lawrence},
	journal = {Czechoslovak Mathematical Journal},
	keywords = {Lucas; Fibonacci; pseudoprime; Fermat; Fibonacci; pseudoprime},
	language = {eng},
	number = {1},
	pages = {447-463},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers},
	url = {http://eudml.org/doc/31141},
	volume = {57},
	year = {2007},
}
TY  - JOUR
AU  - Carlip, Walter
AU  - Somer, Lawrence
TI  - Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2007
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 57
IS  - 1
SP  - 447
EP  - 463
AB  - Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.
LA  - eng
KW  - Lucas; Fibonacci; pseudoprime; Fermat; Fibonacci; pseudoprime
UR  - http://eudml.org/doc/31141
ER  - 
References
top- 10.1090/S0025-5718-1980-0583518-6, Math. Comput. 35 (1980), 1391–1417. (1980) MR0583518DOI10.1090/S0025-5718-1980-0583518-6
 - New primality criteria and factorizations of , Math. Comput. 29 (1975), 620–647. (1975) MR0384673
 - Pseudoprimes, perfect numbers, and a problem of Lehmer, Fibonacci Quart. 36 (1998), 361–371. (1998) MR1640372
 - Primitive Lucas -pseudoprimes and Carmichael-Lucas numbers, Colloq. Math (to appear). (to appear) MR2291618
 - Bounds for frequencies of residues of regular second-order recurrences modulo , In: Number Theory in Progress, Vol. 2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719. (1999) MR1689539
 - On the numerical factors of the arithmetic forms , Ann. of Math. (2) 15 (1913), 30–70. (1913) MR1502458
 - Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184–240, 289–321. (French) (1878) MR1505176
 - The New Book of Prime Number Records, Springer-Verlag, New York, 1996. (1996) Zbl0856.11001MR1377060
 - Lure of the Integers, Mathematical Association of America, Washington, DC, 1992. (1992) MR1189138
 - On Lucas -pseudoprimes, In: Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375. (1998) Zbl0919.11008MR1638463
 - 10.4153/CMB-1977-025-9, Can. Math. Bull. 20 (1977), 133–143. (1977) Zbl0368.10011MR0447099DOI10.4153/CMB-1977-025-9
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.