Square-free Lucas -pseudoprimes and Carmichael-Lucas numbers
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 447-463
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCarlip, Walter, and Somer, Lawrence. "Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers." Czechoslovak Mathematical Journal 57.1 (2007): 447-463. <http://eudml.org/doc/31141>.
@article{Carlip2007,
abstract = {Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.},
author = {Carlip, Walter, Somer, Lawrence},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lucas; Fibonacci; pseudoprime; Fermat; Fibonacci; pseudoprime},
language = {eng},
number = {1},
pages = {447-463},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers},
url = {http://eudml.org/doc/31141},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Carlip, Walter
AU - Somer, Lawrence
TI - Square-free Lucas $d$-pseudoprimes and Carmichael-Lucas numbers
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 447
EP - 463
AB - Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.
LA - eng
KW - Lucas; Fibonacci; pseudoprime; Fermat; Fibonacci; pseudoprime
UR - http://eudml.org/doc/31141
ER -
References
top- 10.1090/S0025-5718-1980-0583518-6, Math. Comput. 35 (1980), 1391–1417. (1980) MR0583518DOI10.1090/S0025-5718-1980-0583518-6
- New primality criteria and factorizations of , Math. Comput. 29 (1975), 620–647. (1975) MR0384673
- Pseudoprimes, perfect numbers, and a problem of Lehmer, Fibonacci Quart. 36 (1998), 361–371. (1998) MR1640372
- Primitive Lucas -pseudoprimes and Carmichael-Lucas numbers, Colloq. Math (to appear). (to appear) MR2291618
- Bounds for frequencies of residues of regular second-order recurrences modulo , In: Number Theory in Progress, Vol. 2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719. (1999) MR1689539
- On the numerical factors of the arithmetic forms , Ann. of Math. (2) 15 (1913), 30–70. (1913) MR1502458
- Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184–240, 289–321. (French) (1878) MR1505176
- The New Book of Prime Number Records, Springer-Verlag, New York, 1996. (1996) Zbl0856.11001MR1377060
- Lure of the Integers, Mathematical Association of America, Washington, DC, 1992. (1992) MR1189138
- On Lucas -pseudoprimes, In: Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375. (1998) Zbl0919.11008MR1638463
- 10.4153/CMB-1977-025-9, Can. Math. Bull. 20 (1977), 133–143. (1977) Zbl0368.10011MR0447099DOI10.4153/CMB-1977-025-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.