The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Embedding c 0 in bvca ( Σ , X )

On Pettis integrability

Juan Carlos Ferrando (2003)

Czechoslovak Mathematical Journal

Similarity:

Assuming that ( Ω , Σ , μ ) is a complete probability space and X a Banach space, in this paper we investigate the problem of the X -inheritance of certain copies of c 0 or in the linear space of all [classes of] X -valued μ -weakly measurable Pettis integrable functions equipped with the usual semivariation norm.

Product of vector measures on topological spaces

Surjit Singh Khurana (2008)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For i = ( 1 , 2 ) , let X i be completely regular Hausdorff spaces, E i quasi-complete locally convex spaces, E = E 1 ˘ E 2 , the completion of the their injective tensor product, C b ( X i ) the spaces of all bounded, scalar-valued continuous functions on X i , and μ i E i -valued Baire measures on X i . Under certain conditions we determine the existence of the E -valued product measure μ 1 μ 2 and prove some properties of these measures.

Dichotomies for 𝐂 0 ( X ) and 𝐂 b ( X ) spaces

Szymon Głąb, Filip Strobin (2013)

Czechoslovak Mathematical Journal

Similarity:

Jachymski showed that the set ( x , y ) 𝐜 0 × 𝐜 0 : i = 1 n α ( i ) x ( i ) y ( i ) n = 1 is bounded is either a meager subset of 𝐜 0 × 𝐜 0 or is equal to 𝐜 0 × 𝐜 0 . In the paper we generalize this result by considering more general spaces than 𝐜 0 , namely 𝐂 0 ( X ) , the space of all continuous functions which vanish at infinity, and 𝐂 b ( X ) , the space of all continuous bounded functions. Moreover, we replace the meagerness by σ -porosity.