Generalizations of pseudo MV-algebras and generalized pseudo effect algebras

Jan Kühr

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 2, page 395-415
  • ISSN: 0011-4642

Abstract

top
We deal with unbounded dually residuated lattices that generalize pseudo M V -algebras in such a way that every principal order-ideal is a pseudo M V -algebra. We describe the connections of these generalized pseudo M V -algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo M V -algebra A by means of the positive cone of a suitable -group G A . We prove that the lattice of all (normal) ideals of A and the lattice of all (normal) convex -subgroups of G A are isomorphic. We also introduce the concept of Archimedeanness and show that every Archimedean generalized pseudo M V -algebra is commutative.

How to cite

top

Kühr, Jan. "Generalizations of pseudo MV-algebras and generalized pseudo effect algebras." Czechoslovak Mathematical Journal 58.2 (2008): 395-415. <http://eudml.org/doc/31217>.

@article{Kühr2008,
abstract = {We deal with unbounded dually residuated lattices that generalize pseudo $MV$-algebras in such a way that every principal order-ideal is a pseudo $MV$-algebra. We describe the connections of these generalized pseudo $MV$-algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo $MV$-algebra $A$ by means of the positive cone of a suitable $\ell $-group $G_A$. We prove that the lattice of all (normal) ideals of $A$ and the lattice of all (normal) convex $\ell $-subgroups of $G_A$ are isomorphic. We also introduce the concept of Archimedeanness and show that every Archimedean generalized pseudo $MV$-algebra is commutative.},
author = {Kühr, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo $MV$-algebra; $DR\ell $-monoid; generalized pseudo effect algebra; pseudo MV-algebra; DR-monoid; generalized pseudo effect algebra},
language = {eng},
number = {2},
pages = {395-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalizations of pseudo MV-algebras and generalized pseudo effect algebras},
url = {http://eudml.org/doc/31217},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Kühr, Jan
TI - Generalizations of pseudo MV-algebras and generalized pseudo effect algebras
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 395
EP - 415
AB - We deal with unbounded dually residuated lattices that generalize pseudo $MV$-algebras in such a way that every principal order-ideal is a pseudo $MV$-algebra. We describe the connections of these generalized pseudo $MV$-algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo $MV$-algebra $A$ by means of the positive cone of a suitable $\ell $-group $G_A$. We prove that the lattice of all (normal) ideals of $A$ and the lattice of all (normal) convex $\ell $-subgroups of $G_A$ are isomorphic. We also introduce the concept of Archimedeanness and show that every Archimedean generalized pseudo $MV$-algebra is commutative.
LA - eng
KW - pseudo $MV$-algebra; $DR\ell $-monoid; generalized pseudo effect algebra; pseudo MV-algebra; DR-monoid; generalized pseudo effect algebra
UR - http://eudml.org/doc/31217
ER -

References

top
  1. Lattice-Ordered Groups (An Introduction), D. Reidel, Dordrecht, 1988. (1988) MR0937703
  2. Cancellative residuated lattices, Algebra Univers. 50 (2003), 83–106. (2003) MR2026830
  3. Groupes et Anneaux Réticulés, Springer, Berlin, 1977. (1977) MR0552653
  4. Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht, 2000. (2000) MR1786097
  5. 10.1017/S1446788700036806, J. Austral. Math. Soc. (Ser. A) 72 (2002), 427–445. (2002) MR1902211DOI10.1017/S1446788700036806
  6. New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000. (2000) MR1861369
  7. 10.1007/s00233-005-0545-6, Semigroup Forum 72 (2006), 191–206. (2006) MR2216089DOI10.1007/s00233-005-0545-6
  8. 10.1023/A:1004192715509, Internat. J. Theor. Phys. 40 (2001), 685–701. (2001) MR1865061DOI10.1023/A:1004192715509
  9. 10.1023/A:1004144832348, Internat. J. Theor. Phys. 40 (2001), 703–726. (2001) MR1865061DOI10.1023/A:1004144832348
  10. Generalized pseudo-effect algebras, In: Lectures on Soft Computing and Fuzzy Logic (A. Di Nola, G. Gerla, eds.), Springer, Berlin, 2001, pp. 89–111. (2001) MR1865061
  11. 10.1016/j.jalgebra.2004.07.002, J. Algebra 283 (2005), 254–291. (2005) MR2102083DOI10.1016/j.jalgebra.2004.07.002
  12. Pseudo-MV algebras, Mult.-Valued Log. 6 (2001), 95–135. (2001) MR1817439
  13. Pseudo-hoops, J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. (2005) MR2162590
  14. Partially Ordered Groups, World Scientific, Singapore, 1999. (1999) Zbl0933.06010MR1791008
  15. 10.1007/s00500-002-0246-y, Soft Comput. 8 (2003), 38–43. (2003) DOI10.1007/s00500-002-0246-y
  16. Classes of pseudo-BCK(pP) lattices, Preprint. MR2648142
  17. A survey of residuated lattices, In: Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. (2002) MR2083033
  18. 10.1007/s10587-005-0006-0, Czech. Math. J. 55 (2005), 97–111. (2005) MR2121658DOI10.1007/s10587-005-0006-0
  19. Finite-valued dually residuated lattice-ordered monoids, Math. Slovaca 56 (2006), 397–408. (2006) MR2267761
  20. On a generalization of pseudo MV-algebras, J. Mult.-Val. Log. Soft Comput 12 (2006), 373–389. (2006) MR2288689
  21. General Theory of Dually Residuated Lattice Ordered Monoids, Ph.D. thesis, Palacký Univ., Olomouc, 1996. (1996) 
  22. Archimedean lattices., Algebra Univers. 3 (1973), 247–260. (1973) Zbl0317.06004MR0349503
  23. 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. (1986) Zbl0597.46059MR0819173DOI10.1016/0022-1236(86)90015-7
  24. 10.1023/A:1021766309509, Czech. Math. J. 52 (2002), 255–273. (2002) MR1905434DOI10.1023/A:1021766309509
  25. 10.1007/PL00012447, Algebra Univers. 48 (2002), 151–169. (2002) MR1929902DOI10.1007/PL00012447
  26. 10.1007/BF01360284, Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.