Generalizations of pseudo MV-algebras and generalized pseudo effect algebras
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 2, page 395-415
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKühr, Jan. "Generalizations of pseudo MV-algebras and generalized pseudo effect algebras." Czechoslovak Mathematical Journal 58.2 (2008): 395-415. <http://eudml.org/doc/31217>.
@article{Kühr2008,
abstract = {We deal with unbounded dually residuated lattices that generalize pseudo $MV$-algebras in such a way that every principal order-ideal is a pseudo $MV$-algebra. We describe the connections of these generalized pseudo $MV$-algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo $MV$-algebra $A$ by means of the positive cone of a suitable $\ell $-group $G_A$. We prove that the lattice of all (normal) ideals of $A$ and the lattice of all (normal) convex $\ell $-subgroups of $G_A$ are isomorphic. We also introduce the concept of Archimedeanness and show that every Archimedean generalized pseudo $MV$-algebra is commutative.},
author = {Kühr, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo $MV$-algebra; $DR\ell $-monoid; generalized pseudo effect algebra; pseudo MV-algebra; DR-monoid; generalized pseudo effect algebra},
language = {eng},
number = {2},
pages = {395-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalizations of pseudo MV-algebras and generalized pseudo effect algebras},
url = {http://eudml.org/doc/31217},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Kühr, Jan
TI - Generalizations of pseudo MV-algebras and generalized pseudo effect algebras
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 395
EP - 415
AB - We deal with unbounded dually residuated lattices that generalize pseudo $MV$-algebras in such a way that every principal order-ideal is a pseudo $MV$-algebra. We describe the connections of these generalized pseudo $MV$-algebras to generalized pseudo effect algebras, which allows us to represent every generalized pseudo $MV$-algebra $A$ by means of the positive cone of a suitable $\ell $-group $G_A$. We prove that the lattice of all (normal) ideals of $A$ and the lattice of all (normal) convex $\ell $-subgroups of $G_A$ are isomorphic. We also introduce the concept of Archimedeanness and show that every Archimedean generalized pseudo $MV$-algebra is commutative.
LA - eng
KW - pseudo $MV$-algebra; $DR\ell $-monoid; generalized pseudo effect algebra; pseudo MV-algebra; DR-monoid; generalized pseudo effect algebra
UR - http://eudml.org/doc/31217
ER -
References
top- Lattice-Ordered Groups (An Introduction), D. Reidel, Dordrecht, 1988. (1988) MR0937703
- Cancellative residuated lattices, Algebra Univers. 50 (2003), 83–106. (2003) MR2026830
- Groupes et Anneaux Réticulés, Springer, Berlin, 1977. (1977) MR0552653
- Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht, 2000. (2000) MR1786097
- 10.1017/S1446788700036806, J. Austral. Math. Soc. (Ser. A) 72 (2002), 427–445. (2002) MR1902211DOI10.1017/S1446788700036806
- New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000. (2000) MR1861369
- 10.1007/s00233-005-0545-6, Semigroup Forum 72 (2006), 191–206. (2006) MR2216089DOI10.1007/s00233-005-0545-6
- 10.1023/A:1004192715509, Internat. J. Theor. Phys. 40 (2001), 685–701. (2001) MR1865061DOI10.1023/A:1004192715509
- 10.1023/A:1004144832348, Internat. J. Theor. Phys. 40 (2001), 703–726. (2001) MR1865061DOI10.1023/A:1004144832348
- Generalized pseudo-effect algebras, In: Lectures on Soft Computing and Fuzzy Logic (A. Di Nola, G. Gerla, eds.), Springer, Berlin, 2001, pp. 89–111. (2001) MR1865061
- 10.1016/j.jalgebra.2004.07.002, J. Algebra 283 (2005), 254–291. (2005) MR2102083DOI10.1016/j.jalgebra.2004.07.002
- Pseudo-MV algebras, Mult.-Valued Log. 6 (2001), 95–135. (2001) MR1817439
- Pseudo-hoops, J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. (2005) MR2162590
- Partially Ordered Groups, World Scientific, Singapore, 1999. (1999) Zbl0933.06010MR1791008
- 10.1007/s00500-002-0246-y, Soft Comput. 8 (2003), 38–43. (2003) DOI10.1007/s00500-002-0246-y
- Classes of pseudo-BCK(pP) lattices, Preprint. MR2648142
- A survey of residuated lattices, In: Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. (2002) MR2083033
- 10.1007/s10587-005-0006-0, Czech. Math. J. 55 (2005), 97–111. (2005) MR2121658DOI10.1007/s10587-005-0006-0
- Finite-valued dually residuated lattice-ordered monoids, Math. Slovaca 56 (2006), 397–408. (2006) MR2267761
- On a generalization of pseudo MV-algebras, J. Mult.-Val. Log. Soft Comput 12 (2006), 373–389. (2006) MR2288689
- General Theory of Dually Residuated Lattice Ordered Monoids, Ph.D. thesis, Palacký Univ., Olomouc, 1996. (1996)
- Archimedean lattices., Algebra Univers. 3 (1973), 247–260. (1973) Zbl0317.06004MR0349503
- 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. (1986) Zbl0597.46059MR0819173DOI10.1016/0022-1236(86)90015-7
- 10.1023/A:1021766309509, Czech. Math. J. 52 (2002), 255–273. (2002) MR1905434DOI10.1023/A:1021766309509
- 10.1007/PL00012447, Algebra Univers. 48 (2002), 151–169. (2002) MR1929902DOI10.1007/PL00012447
- 10.1007/BF01360284, Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.