Finite-valued dually residuated lattice-ordered monoids

Jan Kühr

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 4, page 397-408
  • ISSN: 0139-9918

How to cite

top

Kühr, Jan. "Finite-valued dually residuated lattice-ordered monoids." Mathematica Slovaca 56.4 (2006): 397-408. <http://eudml.org/doc/32422>.

@article{Kühr2006,
author = {Kühr, Jan},
journal = {Mathematica Slovaca},
keywords = {-monoid; ideal; prime ideal; value; finite-valued -monoid},
language = {eng},
number = {4},
pages = {397-408},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Finite-valued dually residuated lattice-ordered monoids},
url = {http://eudml.org/doc/32422},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kühr, Jan
TI - Finite-valued dually residuated lattice-ordered monoids
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 4
SP - 397
EP - 408
LA - eng
KW - -monoid; ideal; prime ideal; value; finite-valued -monoid
UR - http://eudml.org/doc/32422
ER -

References

top
  1. BALBES R.-DWINGER P., Distributive Lattices, University of Missouri Press, Columbia, 1974. (1974) Zbl0321.06012MR0373985
  2. CIGNOLI R. L. O.-D'OTTAWIANO I. M. L.- MUNDICI D., Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR1786097
  3. CONRAD, P, The lattice of all convex t-subgroups of a lattice-ordered group, Czechoslovak Math. J. 15 (1965), 101-123. (1965) MR0173716
  4. DI NOLA A.-GEORGESCU G.-IORGULESCU A., Pseudo BL-algebras: Part I, Mult.-Valued Log. 8 (2002), 673-714. MR1948853
  5. DI NOLA A.-GEORGESCU C.-IORGULESCU A., Pseudo BL-algebras: Part II, Mult.-Valued Log. 8 (2002), 717-750. MR1948854
  6. FILIPOIU A.-GEORGESCU C., On values in relatively normal lattices, Discrete Math. 161 (1996), 87-100. (1996) Zbl0872.06008MR1420523
  7. GEORGESCU C.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  8. GLASS A. M. W., Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong, 1999. (1999) Zbl0933.06010MR1791008
  9. HÁJEK P., Basic fuzzy logic and BL-algebras, Soft Comput. 2 (1998), 124-128. (1998) 
  10. KOVÁŘ T., A General Theory of Dually Residuated Lattice Ordered Monoids, Ph.D. Thesis, Palacky University, Olomouc, 1996. (1996) 
  11. KÜHR J., Ideals of noncommutative DRt-monoids, Czechoslovak Math. J. 55 (2005), 97-111. MR2121658
  12. KÜHR J., Prime ideals and polars in D R -monoids and pseudo B L -algebras, Math. Slovaca 53 (2003), 233-246. MR2025020
  13. RACHŮNEK J., M V -algebras are categorically equivalent to a class of D R 1 ( i ) -semi-groups, Math. Bohem. 123 (1998), 437-441. (1998) MR1667115
  14. RACHŮNEK J., A duality between algebras of basic logic and bounded representable D R -monoids, Math. Bohem. 126 (2001), 561-569. MR1970259
  15. RACHŮNEK J., A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. Zbl1012.06012MR1905434
  16. RACHŮNEK J., Radicals in non-commutative generalizations of MV -algebras, Math. Slovaca 52 (2002), 135-144. Zbl1008.06011MR1935113
  17. SNODGRASS J. T.-TSINAKIS C., Finite-valued algebraic lattices, Algebra Universalis 30 (1993), 311-318. (1993) Zbl0806.06011MR1225870
  18. SNODGRASS J. T.-TSINAKIS C., The finite basis theorem for relatively normal lattices, Algebra Universalis 33 (1995), 40-67. (1995) Zbl0819.06009MR1303631
  19. SWAMY K. L. N., Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.