Characterizing the maximum genus of a connected graph

Ladislav Nebeský

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 1, page 177-185
  • ISSN: 0011-4642

How to cite

top

Nebeský, Ladislav. "Characterizing the maximum genus of a connected graph." Czechoslovak Mathematical Journal 43.1 (1993): 177-185. <http://eudml.org/doc/31333>.

@article{Nebeský1993,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximum genus; connected graph},
language = {eng},
number = {1},
pages = {177-185},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizing the maximum genus of a connected graph},
url = {http://eudml.org/doc/31333},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - Characterizing the maximum genus of a connected graph
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 1
SP - 177
EP - 185
LA - eng
KW - maximum genus; connected graph
UR - http://eudml.org/doc/31333
ER -

References

top
  1. 10.1016/0095-8956(71)90041-4, J. Combinatorial Theory B 10 (1971), 183–186. (1971) Zbl0172.48904MR0276105DOI10.1016/0095-8956(71)90041-4
  2. Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, 1979. (1979) MR0525578
  3. Théorie des graphes et ses applications, Dunod, Paris, 1958. (1958) MR0102822
  4. Graph Theory with Applications, MacMillan, London, 1976. (1976) MR0411988
  5. 10.4153/CJM-1966-081-6, Canad. J. Math 18 (1966), 817–822. (1966) Zbl0141.21302MR0196731DOI10.4153/CJM-1966-081-6
  6. 10.1112/jlms/s1-10.37.26, J. London Math. Soc. 10 (1935), 26–30. (1935) Zbl0010.34503DOI10.1112/jlms/s1-10.37.26
  7. Single-component 2-cell embeddings and the maximum genus of a graph, In: Some Topological and Combinatorial Properties of Graphs, preprint 80.8, N. P. Homenko (ed.), IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) (1980) MR0583197
  8. The maximum genus of a graph, In: -Transformations of Graphs, N. P. Homenko (ed.), IM AN URSR, Kiev, 1973, pp. 180–207. (1973) 
  9. A characterization of upper-embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401–406. (1978) Zbl0379.05025MR0492309
  10. A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31 (106) (1981), 604–613. (1981) MR0631605
  11. 10.1016/0095-8956(71)90036-0, J. Combinatorial Theory B 11 (1971), 258–267. (1971) MR0286713DOI10.1016/0095-8956(71)90036-0
  12. 10.1093/qmath/os-13.1.83, Quart. J. Math. (Oxford) 13 (1942), 83–89. (1942) Zbl0063.06369MR0008250DOI10.1093/qmath/os-13.1.83
  13. 10.1002/jgt.3190010210, J. Graph Theory 1 (1977), 141–155. (1977) Zbl0386.05030MR0444509DOI10.1002/jgt.3190010210
  14. 10.1016/0012-365X(91)90029-2, Discrete Math. 94 (1991), 233–238. (1991) MR1138602DOI10.1016/0012-365X(91)90029-2
  15. 10.1016/0095-8956(91)90099-6, J. Combinatorial Theory B 52 (1991), 124–146. (1991) MR1109428DOI10.1016/0095-8956(91)90099-6
  16. The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107–111. (1947) Zbl0029.23301MR0023048
  17. Graphs, Groups, and Surfaces, North Holland, Amsterdam, 1973. (1973) Zbl0268.05102
  18. Introduction to Graph Theory, Longman Group, London, 1975. (1975) MR0826772
  19. 10.1016/0095-8956(79)90058-3, J. Combinatorial Theory B 26 (1979), 217–225. (1979) Zbl0403.05035MR0532589DOI10.1016/0095-8956(79)90058-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.