The maximum genus, matchings and the cycle space of a graph
Hung-Lin Fu; Martin Škoviera; Ming-Chun Tsai
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 2, page 329-339
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFu, Hung-Lin, Škoviera, Martin, and Tsai, Ming-Chun. "The maximum genus, matchings and the cycle space of a graph." Czechoslovak Mathematical Journal 48.2 (1998): 329-339. <http://eudml.org/doc/30422>.
@article{Fu1998,
abstract = {In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .},
author = {Fu, Hung-Lin, Škoviera, Martin, Tsai, Ming-Chun},
journal = {Czechoslovak Mathematical Journal},
keywords = {Maximum genus; matching; cycle space; maximum genus; matching; cycle space},
language = {eng},
number = {2},
pages = {329-339},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The maximum genus, matchings and the cycle space of a graph},
url = {http://eudml.org/doc/30422},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Fu, Hung-Lin
AU - Škoviera, Martin
AU - Tsai, Ming-Chun
TI - The maximum genus, matchings and the cycle space of a graph
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 2
SP - 329
EP - 339
AB - In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .
LA - eng
KW - Maximum genus; matching; cycle space; maximum genus; matching; cycle space
UR - http://eudml.org/doc/30422
ER -
References
top- Sur le couplage maximum d’un graphe, C. R. Acad. Sci. Paris (A) 247 (1958), 258–259. (1958) Zbl0086.16301MR0100850
- 10.1006/jctb.1994.1013, J. Combin. Theory Ser. B 60 (1994), 195–206. (1994) Zbl0794.05016MR1271269DOI10.1006/jctb.1994.1013
- 10.1016/1385-7258(73)90007-3, Indag. Math. 35 (1973), 228–232. (1973) MR0321809DOI10.1016/1385-7258(73)90007-3
- 10.1006/jctb.1993.1009, J. Combin. Theory Ser. B 57 (1993), 100–121. (1993) MR1198400DOI10.1006/jctb.1993.1009
- The maximum genus of planar graphs, Ukrain. Mat. Zh. 34 (1982), 97–99. (Russian) (1982) MR0647937
- 10.1002/jgt.3190150205, J. Graph Theory 15 (1991), 159–171. (1991) MR1106529DOI10.1002/jgt.3190150205
- 10.1112/jlms/s1-10.37.26, J. London Math. Soc. 10 (1935), 26–30. (1935) DOI10.1112/jlms/s1-10.37.26
- A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401–406. (1978) Zbl0379.05025MR0492309
- Single-component -cell embeddings and the maximum genus of a graph, Some Topological and Combinatorial Properties of Graphs, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1980, pp. 5–23. (Russian) (1980) MR0583197
- The maximum genus of a graph, -Transformations of Graphs, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1973, pp. 180–207. (Ukrainian, English summary) (1973)
- -Transformations of the representation graph, Preprint 70.7, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1970. (Russian) (1970) MR0531858
- Graphok és matrixok, Math. Fiz. Lapok 38 (1931), 116–119. (Hungarian) (1931)
- A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31 (106) (1981), 604–613. (1981) MR0631605
- On -cell embeddings of graphs with minimum number of regions, Czechoslovak Math. J. 35 (110) (1985), 625–631. (1985) MR0809045
- Characterizing the maximum genus of a connected graph, Czechoslovak Math. J. 43 (118) (1993), 177–185. (1993) MR1205240
- 10.1016/0095-8956(71)90036-0, J. Combin. Theory Ser. B 11 (1971), 258–267. (1971) MR0286713DOI10.1016/0095-8956(71)90036-0
- 10.1016/0095-8956(72)90040-8, J. Combin. Theory Ser. B 12 (1972), 260–267. (1972) MR0299523DOI10.1016/0095-8956(72)90040-8
- 10.1016/0095-8956(91)90099-6, J. Combin. Theory Ser. B 52 (1991), 124–146. (1991) MR1109428DOI10.1016/0095-8956(91)90099-6
- Graphs with -factors, Proc. Amer. Math. Soc. 42 (1974), 8–12. (1974) Zbl0293.05157MR0323648
- The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107–111. (1947) Zbl0029.23301MR0023048
- How to determine the maximum genus of a graph, J. Combin. Theory Ser. B (1979), 217–225. (1979) Zbl0403.05035MR0532589
- 10.1002/jgt.3190160503, J. Graph Theory 16 (1992), 399–422. (1992) Zbl0778.05033MR1185006DOI10.1002/jgt.3190160503
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.