The divergence theorem and Perron integration with exceptional sets

Wolfgang B. Jurkat

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 1, page 27-45
  • ISSN: 0011-4642

How to cite

top

Jurkat, Wolfgang B.. "The divergence theorem and Perron integration with exceptional sets." Czechoslovak Mathematical Journal 43.1 (1993): 27-45. <http://eudml.org/doc/31335>.

@article{Jurkat1993,
author = {Jurkat, Wolfgang B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {divergence theorems; generalized Riemann integral; non-absolutely convergent multiple integrals; divergence of vector fields},
language = {eng},
number = {1},
pages = {27-45},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The divergence theorem and Perron integration with exceptional sets},
url = {http://eudml.org/doc/31335},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Jurkat, Wolfgang B.
TI - The divergence theorem and Perron integration with exceptional sets
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 1
SP - 27
EP - 45
LA - eng
KW - divergence theorems; generalized Riemann integral; non-absolutely convergent multiple integrals; divergence of vector fields
UR - http://eudml.org/doc/31335
ER -

References

top
  1. 10.1007/BF01999447, Monatsh. Math. 26 (1915), 153–198. (1915) MR1548647DOI10.1007/BF01999447
  2. Geometric Measure Theory, Springer, Berlin-Heidelberg-New-York, 1969. (1969) Zbl0176.00801MR0257325
  3. On Mawhin’s approach to multiple non-absolutely convergent integrals, Časopis pro Pěst. Mat. 108 (4) (1983), 356–380. (1983) MR0727536
  4. A non-absolutely convergent integral which admits C 1 -transformations, Casopis pro Pest. Mat. 109 (1984), 157–167. (1984) MR0744873
  5. A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czech. Math. J. 35 (110) (1985), 116–139. (1985) MR0779340
  6. A new and more powerful concept of the PU-integral, Czech. Math. J. 38 (113) (1988), 8–48. (1988) MR0925939
  7. A characterization of multi-dimensional Perron integrals and the Fundamental Theorem, (to appear). (to appear) MR1118008
  8. Generalized absolutely continuous interval functions and multi-dimensional Perron integration, (to appear). (to appear) MR1182631
  9. The general form of Green’s Theorem, (to appear). (to appear) MR1000158
  10. A non-absolutely convergent integral in E m and the theorem of Gauss, Czech. Math. J. 15 (90) (1965), 253–259. (1965) MR0177092
  11. The surface integral, Czech. Math. J. 6 (81) (1956), 522–558. (1956) MR0089891
  12. Generalized Riemann integral and the divergence theorem for differentiable vector fields, Proceedings of the International Christoffel Symposium, Birkhaeuser, Basel, 1981, pp. 704–714. (1981) MR0661109
  13. Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (106) (1981), 614–632. (1981) Zbl0562.26004MR0631606
  14. Perron Integration auf allgemeinen Bereichen und der Satz von Gree, Diplomarbeit Univ. Ulm, 1988, pp. 1–117. (1988) 
  15. 10.1090/S0002-9947-1986-0833702-0, Trans. AMS 295 (1986), 665–685. (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0
  16. 10.1017/S1446788700029293, J. Austral. Math. Soc. 43 (1987), 143–170. (1987) Zbl0638.26011MR0896622DOI10.1017/S1446788700029293
  17. A multidimensional variational integral and its extensions, preprint (1988). (1988) MR1042534
  18. Theory of the Integral ( 2 nd revised edition), Dover Publications, New-York, 1964. (1964) MR0167578
  19. 10.1112/jlms/s1-32.3.261, J. London Math. Soc. 32 (1957), 261–269. (1957) Zbl0079.27902MR0089275DOI10.1112/jlms/s1-32.3.261

Citations in EuDML Documents

top
  1. W. Jurkat, D. Nonnenmacher, An axiomatic theory of non-absolutely convergent integrals in Rn
  2. Wolfgang B. Jurkat, D. J. F. Nonnenmacher, The fundamental theorem for the ν 1 -integral on more general sets and a corresponding divergence theorem with singularities
  3. W. Jurkat, D. Nonnenmacher, A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary
  4. Jan Malý, Kristýna Kuncová, On a generalization of Henstock-Kurzweil integrals

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.