The divergence theorem and Perron integration with exceptional sets
Czechoslovak Mathematical Journal (1993)
- Volume: 43, Issue: 1, page 27-45
- ISSN: 0011-4642
Access Full Article
topHow to cite
topJurkat, Wolfgang B.. "The divergence theorem and Perron integration with exceptional sets." Czechoslovak Mathematical Journal 43.1 (1993): 27-45. <http://eudml.org/doc/31335>.
@article{Jurkat1993,
author = {Jurkat, Wolfgang B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {divergence theorems; generalized Riemann integral; non-absolutely convergent multiple integrals; divergence of vector fields},
language = {eng},
number = {1},
pages = {27-45},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The divergence theorem and Perron integration with exceptional sets},
url = {http://eudml.org/doc/31335},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Jurkat, Wolfgang B.
TI - The divergence theorem and Perron integration with exceptional sets
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 1
SP - 27
EP - 45
LA - eng
KW - divergence theorems; generalized Riemann integral; non-absolutely convergent multiple integrals; divergence of vector fields
UR - http://eudml.org/doc/31335
ER -
References
top- 10.1007/BF01999447, Monatsh. Math. 26 (1915), 153–198. (1915) MR1548647DOI10.1007/BF01999447
- Geometric Measure Theory, Springer, Berlin-Heidelberg-New-York, 1969. (1969) Zbl0176.00801MR0257325
- On Mawhin’s approach to multiple non-absolutely convergent integrals, Časopis pro Pěst. Mat. 108 (4) (1983), 356–380. (1983) MR0727536
- A non-absolutely convergent integral which admits -transformations, Casopis pro Pest. Mat. 109 (1984), 157–167. (1984) MR0744873
- A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czech. Math. J. 35 (110) (1985), 116–139. (1985) MR0779340
- A new and more powerful concept of the PU-integral, Czech. Math. J. 38 (113) (1988), 8–48. (1988) MR0925939
- A characterization of multi-dimensional Perron integrals and the Fundamental Theorem, (to appear). (to appear) MR1118008
- Generalized absolutely continuous interval functions and multi-dimensional Perron integration, (to appear). (to appear) MR1182631
- The general form of Green’s Theorem, (to appear). (to appear) MR1000158
- A non-absolutely convergent integral in and the theorem of Gauss, Czech. Math. J. 15 (90) (1965), 253–259. (1965) MR0177092
- The surface integral, Czech. Math. J. 6 (81) (1956), 522–558. (1956) MR0089891
- Generalized Riemann integral and the divergence theorem for differentiable vector fields, Proceedings of the International Christoffel Symposium, Birkhaeuser, Basel, 1981, pp. 704–714. (1981) MR0661109
- Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (106) (1981), 614–632. (1981) Zbl0562.26004MR0631606
- Perron Integration auf allgemeinen Bereichen und der Satz von Gree, Diplomarbeit Univ. Ulm, 1988, pp. 1–117. (1988)
- 10.1090/S0002-9947-1986-0833702-0, Trans. AMS 295 (1986), 665–685. (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0
- 10.1017/S1446788700029293, J. Austral. Math. Soc. 43 (1987), 143–170. (1987) Zbl0638.26011MR0896622DOI10.1017/S1446788700029293
- A multidimensional variational integral and its extensions, preprint (1988). (1988) MR1042534
- Theory of the Integral ( revised edition), Dover Publications, New-York, 1964. (1964) MR0167578
- 10.1112/jlms/s1-32.3.261, J. London Math. Soc. 32 (1957), 261–269. (1957) Zbl0079.27902MR0089275DOI10.1112/jlms/s1-32.3.261
Citations in EuDML Documents
top- W. Jurkat, D. Nonnenmacher, An axiomatic theory of non-absolutely convergent integrals in Rn
- Wolfgang B. Jurkat, D. J. F. Nonnenmacher, The fundamental theorem for the -integral on more general sets and a corresponding divergence theorem with singularities
- W. Jurkat, D. Nonnenmacher, A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary
- Jan Malý, Kristýna Kuncová, On a generalization of Henstock-Kurzweil integrals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.