The fundamental theorem for the ν 1 -integral on more general sets and a corresponding divergence theorem with singularities

Wolfgang B. Jurkat; D. J. F. Nonnenmacher

Czechoslovak Mathematical Journal (1995)

  • Volume: 45, Issue: 1, page 69-77
  • ISSN: 0011-4642

How to cite

top

Jurkat, Wolfgang B., and Nonnenmacher, D. J. F.. "The fundamental theorem for the $\nu _1$-integral on more general sets and a corresponding divergence theorem with singularities." Czechoslovak Mathematical Journal 45.1 (1995): 69-77. <http://eudml.org/doc/31458>.

@article{Jurkat1995,
author = {Jurkat, Wolfgang B., Nonnenmacher, D. J. F.},
journal = {Czechoslovak Mathematical Journal},
keywords = {multidimensional nonabsolute integrals; divergence theorem; vector field},
language = {eng},
number = {1},
pages = {69-77},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The fundamental theorem for the $\nu _1$-integral on more general sets and a corresponding divergence theorem with singularities},
url = {http://eudml.org/doc/31458},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Jurkat, Wolfgang B.
AU - Nonnenmacher, D. J. F.
TI - The fundamental theorem for the $\nu _1$-integral on more general sets and a corresponding divergence theorem with singularities
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 1
SP - 69
EP - 77
LA - eng
KW - multidimensional nonabsolute integrals; divergence theorem; vector field
UR - http://eudml.org/doc/31458
ER -

References

top
  1. Geometric Measure Theory, Springer, New York, 1969. (1969) Zbl0176.00801MR0257325
  2. A non-absolutely convergent integral which admits C 1 -Transformations, Časopis pro Pěstovaní Mat. 109 (1984), 157–167. (1984) MR0744873
  3. A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czech. Math. J. 35 (110) (1985), 116–139. (1985) MR0779340
  4. A new and more powerful concept of the P U -integral, Czech. Math. J. 38 (113) (1988), 8–48. (1988) MR0925939
  5. The Divergence Theorem and Perron integration with exceptional sets, Czech. Math. J. 43 (1993), 27–45. (1993) Zbl0789.26005MR1205229
  6. 10.4064/fm-145-3-221-242, Fund. Math. 145 (1994), 221–242. (1994) MR1297406DOI10.4064/fm-145-3-221-242
  7. A generalized n -dimensional Riemann integral and the Divergence Theorem with singularities, Acta Sci. Math. (Szeged) 59 (1994), 241–256. (1994) MR1285443
  8. Theorie mehrdimensionaler Perron-Integrale mit Ausnahmemengen, PhD thesis, Univ. of Ulm, 1990. (1990) Zbl0724.26010
  9. 10.1090/S0002-9947-1986-0833702-0, Trans. Amer. Math. Soc. 295 (1986), 665–685. (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0
  10. 10.1016/0001-8708(91)90063-D, Advances in Mathematics 87 (1991), no. 1, 93–147. (1991) Zbl0732.26013MR1102966DOI10.1016/0001-8708(91)90063-D
  11. Theory of the integral, Dover, New York, 1964. (1964) MR0167578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.