Every -integrable function is Pfeffer integrable
Czechoslovak Mathematical Journal (1993)
- Volume: 43, Issue: 2, page 327-330
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNonnenmacher, D. J. F.. "Every ${\rm M}_1$-integrable function is Pfeffer integrable." Czechoslovak Mathematical Journal 43.2 (1993): 327-330. <http://eudml.org/doc/31347>.
@article{Nonnenmacher1993,
author = {Nonnenmacher, D. J. F.},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonabsolute integral; generalized Riemann integrals; differentiable vector fields; divergence theorem; -integral},
language = {eng},
number = {2},
pages = {327-330},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Every $\{\rm M\}_1$-integrable function is Pfeffer integrable},
url = {http://eudml.org/doc/31347},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Nonnenmacher, D. J. F.
TI - Every ${\rm M}_1$-integrable function is Pfeffer integrable
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 327
EP - 330
LA - eng
KW - nonabsolute integral; generalized Riemann integrals; differentiable vector fields; divergence theorem; -integral
UR - http://eudml.org/doc/31347
ER -
References
top- A general Riemann complete integral in the plane, (to appear). (to appear) Zbl0749.26005MR1139326
- On Mawhin’s approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat. 108 (1983), 356–380. (1983) MR0727536
- 10.4153/CJM-1991-032-8, Can. J. Math. 43 (3) (1991), 526–539. (1991) MR1118008DOI10.4153/CJM-1991-032-8
- Generalized Riemann integrals and the divergence theorem for differentiable vector fields, Proceedings of the Int. Christoffel Symposium, Birkhäuser, Basel, 1981, 704–714. (1981, 704–714) MR0661109
- Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (106) (1981), 614–632. (1981) Zbl0562.26004MR0631606
- On a generalized multiple integral and the divergence theorem, Bull. Soc. Math. Belg. 40 (1988), no. 1, ser. B, 111–130. (1988) Zbl0658.26008MR0951010
- Henstock integration in the plane, Memoirs of the American Math. Soc., Providence 63, no. 353. Zbl0596.26005MR0856159
- 10.1090/S0002-9947-1986-0833702-0, Trans American Math. Soc. 295 (1986), . (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0
Citations in EuDML Documents
top- Jiří Jarník, Jaroslav Kurzweil, Pfeffer integrability does not imply -integrability
- Dirk Jens F. Nonnenmacher, A descriptive, additive modification of Mawhin's integral and the Divergence Theorem with singularities
- Wolfgang B. Jurkat, D. J. F. Nonnenmacher, A Hake-type property for the -integral and its relation to other integration processes
- Claude-Alain Faure, A descriptive definition of some multidimensional gauge integrals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.