Every M 1 -integrable function is Pfeffer integrable

D. J. F. Nonnenmacher

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 2, page 327-330
  • ISSN: 0011-4642

How to cite

top

Nonnenmacher, D. J. F.. "Every ${\rm M}_1$-integrable function is Pfeffer integrable." Czechoslovak Mathematical Journal 43.2 (1993): 327-330. <http://eudml.org/doc/31347>.

@article{Nonnenmacher1993,
author = {Nonnenmacher, D. J. F.},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonabsolute integral; generalized Riemann integrals; differentiable vector fields; divergence theorem; -integral},
language = {eng},
number = {2},
pages = {327-330},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Every $\{\rm M\}_1$-integrable function is Pfeffer integrable},
url = {http://eudml.org/doc/31347},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Nonnenmacher, D. J. F.
TI - Every ${\rm M}_1$-integrable function is Pfeffer integrable
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 327
EP - 330
LA - eng
KW - nonabsolute integral; generalized Riemann integrals; differentiable vector fields; divergence theorem; -integral
UR - http://eudml.org/doc/31347
ER -

References

top
  1. A general Riemann complete integral in the plane, (to appear). (to appear) Zbl0749.26005MR1139326
  2. On Mawhin’s approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat. 108 (1983), 356–380. (1983) MR0727536
  3. 10.4153/CJM-1991-032-8, Can. J. Math. 43 (3) (1991), 526–539. (1991) MR1118008DOI10.4153/CJM-1991-032-8
  4. Generalized Riemann integrals and the divergence theorem for differentiable vector fields, Proceedings of the Int. Christoffel Symposium, Birkhäuser, Basel, 1981, 704–714. (1981, 704–714) MR0661109
  5. Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (106) (1981), 614–632. (1981) Zbl0562.26004MR0631606
  6. On a generalized multiple integral and the divergence theorem, Bull. Soc. Math. Belg. 40 (1988), no. 1, ser. B, 111–130. (1988) Zbl0658.26008MR0951010
  7. Henstock integration in the plane, Memoirs of the American Math. Soc., Providence 63, no. 353. Zbl0596.26005MR0856159
  8. 10.1090/S0002-9947-1986-0833702-0, Trans American Math. Soc. 295 (1986), . (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.