A Hake-type property for the -integral and its relation to other integration processes
Wolfgang B. Jurkat; D. J. F. Nonnenmacher
Czechoslovak Mathematical Journal (1995)
- Volume: 45, Issue: 3, page 465-472
- ISSN: 0011-4642
Access Full Article
topHow to cite
topJurkat, Wolfgang B., and Nonnenmacher, D. J. F.. "A Hake-type property for the $\nu _1$-integral and its relation to other integration processes." Czechoslovak Mathematical Journal 45.3 (1995): 465-472. <http://eudml.org/doc/31480>.
@article{Jurkat1995,
author = {Jurkat, Wolfgang B., Nonnenmacher, D. J. F.},
journal = {Czechoslovak Mathematical Journal},
keywords = {gauge integrals; Hake's property; non-absolutely convergent integrals; -integral},
language = {eng},
number = {3},
pages = {465-472},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Hake-type property for the $\nu _1$-integral and its relation to other integration processes},
url = {http://eudml.org/doc/31480},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Jurkat, Wolfgang B.
AU - Nonnenmacher, D. J. F.
TI - A Hake-type property for the $\nu _1$-integral and its relation to other integration processes
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 3
SP - 465
EP - 472
LA - eng
KW - gauge integrals; Hake's property; non-absolutely convergent integrals; -integral
UR - http://eudml.org/doc/31480
ER -
References
top- Geometric Measure Theory, Springer, New York, 1969. (1969) Zbl0176.00801MR0257325
- A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czech. Math. J. 35 (110) (1985), 116–139. (1985) MR0779340
- On Mawhin’s approach to multiple nonabsolutely convergent integral, Casopis Pest. Mat. 108 (1983), 356–380. (1983) MR0727536
- 10.4064/fm-145-3-221-242, Fund. Math. 145 (1994), 221–242. (1994) MR1297406DOI10.4064/fm-145-3-221-242
- A generalized -dimensional Riemann integral and the Divergence Theorem with singularities, Acta Sci. Math. (Szeged) 59 (1994), 241–256. (1994) MR1285443
- The Fundamental Theorem for the -integral on more general sets and a corresponding Divergence Theorem with singularities, (to appear). (to appear) MR1314531
- 10.1007/BF03323075, Results in Mathematics 21 (1992), 138–151. (1992) MR1146639DOI10.1007/BF03323075
- Every -integrable function is Pfeffer integrable, Czech. Math. J. 43 (118) (1993), 327–330. (1993) MR1211754
- 10.1016/0001-8708(91)90063-D, Adv. in Math. 87 (1991), no. 1, 93–147. (1991) Zbl0732.26013MR1102966DOI10.1016/0001-8708(91)90063-D
- Theory of the integral, Dover, New York, 1964. (1964) MR0167578
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.