A descriptive definition of some multidimensional gauge integrals
Czechoslovak Mathematical Journal (1995)
- Volume: 45, Issue: 3, page 549-562
- ISSN: 0011-4642
Access Full Article
topHow to cite
topFaure, Claude-Alain. "A descriptive definition of some multidimensional gauge integrals." Czechoslovak Mathematical Journal 45.3 (1995): 549-562. <http://eudml.org/doc/31479>.
@article{Faure1995,
author = {Faure, Claude-Alain},
journal = {Czechoslovak Mathematical Journal},
keywords = {gauge integrals; descriptive integrals; multidimensional integral},
language = {eng},
number = {3},
pages = {549-562},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A descriptive definition of some multidimensional gauge integrals},
url = {http://eudml.org/doc/31479},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Faure, Claude-Alain
TI - A descriptive definition of some multidimensional gauge integrals
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 3
SP - 549
EP - 562
LA - eng
KW - gauge integrals; descriptive integrals; multidimensional integral
UR - http://eudml.org/doc/31479
ER -
References
top- The Hake’s property for some integrals over multidimensional intervals, Preprint (1994). (1994) MR1348084
- Pfeffer integrability does not imply -integrability, Czech. Math. J. 44 (1994), 47–56. (1994) MR1257935
- On Mawhin’s approach to multiple nonabsolutely convergent integral, Casopis Pest. Mat. 108 (1983), 356–380. (1983) MR0727536
- 10.4153/CJM-1991-032-8, Can. J. Math. 43 (1991), 526–539. (1991) MR1118008DOI10.4153/CJM-1991-032-8
- 10.1524/anly.1992.12.34.303, Analysis 12 (1992), 303–313. (1992) MR1182631DOI10.1524/anly.1992.12.34.303
- Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exchange 17 (1991–92), 110–139. (1991–92) MR1147361
- 10.1007/BF03323075, Results Math. 21 (1992), 138–151. (1992) MR1146639DOI10.1007/BF03323075
- Equivalent definitions of regular generalized Perron integral, Czech. Math. J. 42 (1992), 365–378. (1992) MR1179506
- Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (1981), 614–632. (1981) Zbl0562.26004MR0631606
- Analyse, De Boeck, 1992. (1992) Zbl0759.26004MR1190926
- Every -integrable function is Pfeffer integrable, Czech. Math. J. 43 (1993), 327–330. (1993) MR1211754
- A descriptive, additive modification of Mawhin’s integral and the divergence theorem with singularities, Preprint (1993). (1993) MR1270304
- 10.1007/BF02844902, Rend. Circ. Mat. Palermo, Ser. II 36 (1987), 482–506. (1987) Zbl0669.26007MR0981151DOI10.1007/BF02844902
- 10.1090/S0002-9947-1986-0833702-0, Trans. Amer. Math. Soc. 295 (1986), 665–685. (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0
- Theory of the Integral, Hafner Publishing Company, 1937. (1937) Zbl0017.30004
Citations in EuDML Documents
top- Lee Tuo-Yeong, Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space
- Tuo-Yeong Lee, A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
- Tuo-Yeong Lee, Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.