A descriptive definition of some multidimensional gauge integrals

Claude-Alain Faure

Czechoslovak Mathematical Journal (1995)

  • Volume: 45, Issue: 3, page 549-562
  • ISSN: 0011-4642

How to cite

top

Faure, Claude-Alain. "A descriptive definition of some multidimensional gauge integrals." Czechoslovak Mathematical Journal 45.3 (1995): 549-562. <http://eudml.org/doc/31479>.

@article{Faure1995,
author = {Faure, Claude-Alain},
journal = {Czechoslovak Mathematical Journal},
keywords = {gauge integrals; descriptive integrals; multidimensional integral},
language = {eng},
number = {3},
pages = {549-562},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A descriptive definition of some multidimensional gauge integrals},
url = {http://eudml.org/doc/31479},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Faure, Claude-Alain
TI - A descriptive definition of some multidimensional gauge integrals
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 3
SP - 549
EP - 562
LA - eng
KW - gauge integrals; descriptive integrals; multidimensional integral
UR - http://eudml.org/doc/31479
ER -

References

top
  1. The Hake’s property for some integrals over multidimensional intervals, Preprint (1994). (1994) MR1348084
  2. Pfeffer integrability does not imply M 1 -integrability, Czech. Math. J. 44 (1994), 47–56. (1994) MR1257935
  3. On Mawhin’s approach to multiple nonabsolutely convergent integral, Casopis Pest. Mat. 108 (1983), 356–380. (1983) MR0727536
  4. 10.4153/CJM-1991-032-8, Can. J. Math. 43 (1991), 526–539. (1991) MR1118008DOI10.4153/CJM-1991-032-8
  5. 10.1524/anly.1992.12.34.303, Analysis 12 (1992), 303–313. (1992) MR1182631DOI10.1524/anly.1992.12.34.303
  6. Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exchange 17 (1991–92), 110–139. (1991–92) MR1147361
  7. 10.1007/BF03323075, Results Math. 21 (1992), 138–151. (1992) MR1146639DOI10.1007/BF03323075
  8. Equivalent definitions of regular generalized Perron integral, Czech. Math. J. 42 (1992), 365–378. (1992) MR1179506
  9. Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czech. Math. J. 31 (1981), 614–632. (1981) Zbl0562.26004MR0631606
  10. Analyse, De Boeck, 1992. (1992) Zbl0759.26004MR1190926
  11. Every M 1 -integrable function is Pfeffer integrable, Czech. Math. J. 43 (1993), 327–330. (1993) MR1211754
  12. A descriptive, additive modification of Mawhin’s integral and the divergence theorem with singularities, Preprint (1993). (1993) MR1270304
  13. 10.1007/BF02844902, Rend. Circ. Mat. Palermo, Ser. II 36 (1987), 482–506. (1987) Zbl0669.26007MR0981151DOI10.1007/BF02844902
  14. 10.1090/S0002-9947-1986-0833702-0, Trans. Amer. Math. Soc. 295 (1986), 665–685. (1986) Zbl0596.26007MR0833702DOI10.1090/S0002-9947-1986-0833702-0
  15. Theory of the Integral, Hafner Publishing Company, 1937. (1937) Zbl0017.30004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.