Local properties and upper embeddability of connected multigraphs

Ladislav Nebeský

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 2, page 241-248
  • ISSN: 0011-4642

How to cite

top

Nebeský, Ladislav. "Local properties and upper embeddability of connected multigraphs." Czechoslovak Mathematical Journal 43.2 (1993): 241-248. <http://eudml.org/doc/31354>.

@article{Nebeský1993,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {upper embeddability; connected multigraph},
language = {eng},
number = {2},
pages = {241-248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local properties and upper embeddability of connected multigraphs},
url = {http://eudml.org/doc/31354},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - Local properties and upper embeddability of connected multigraphs
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 241
EP - 248
LA - eng
KW - upper embeddability; connected multigraph
UR - http://eudml.org/doc/31354
ER -

References

top
  1. Graphs & Digraphs, Prindle, Weber Schmidt, Boston, 1979. (1979) MR0525578
  2. Locally connected graphs, Časopis pěst. mat. 99 (1974), 158–163. (1974) MR0398872
  3. On chord-critical graphs, In: Some Topological and Combinatorial Properties of Graphs, Preprint 80.8, IM AN USSR, Kiev, 1980, pp. 24–27. (Russian) (1980) MR0583198
  4. One-component 2-cell embeddings and the maximum genus of a graph, In: Some Topological and Combinatorial Properties of Graphs, Preprint 80.8, IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) (1980) MR0583197
  5. The maximum genus of graphs, In: -Transformations of Graphs, N. P. Homenko (ed.), IM AN USSR, Kiev, 1973, pp. 180–210. (Ukrainian, English summary) (1973) MR0422065
  6. A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401–406. (1978) Zbl0379.05025MR0492309
  7. A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31 (106) (1981), 604–613. (1981) MR0631605
  8. On locally quasiconnected graphs and their upper embeddability, Czechoslovak Math. J. 35 (110) (1985), 162–166. (1985) MR0779344
  9. N 2 -locally connected graphs and their upper embeddability, Czechoslovak Math. J. 41 (116) (1991), 731–735. (1991) MR1134962
  10. On graphs embeddable with short faces, In: Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990, pp. 519–529. (1990) MR1100074
  11. On graphs with isomorphic, non-isomorphic and connected N 2 -neighbourhoods, Časopis pěst. mat. 12 (1987), 66–79. (1987) 
  12. Graphs, Groups, and Surfaces, North-Holland, Amsterdam, 1973. (1973) Zbl0268.05102
  13. 10.1016/0095-8956(79)90058-3, J. Combinatorial Theory Ser. B 26 (1979), 217–225. (1979) Zbl0403.05035MR0532589DOI10.1016/0095-8956(79)90058-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.