Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform

Amiran Gogatishvili; Luboš Pick

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 3, page 547-566
  • ISSN: 0011-4642

How to cite

top

Gogatishvili, Amiran, and Pick, Luboš. "Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform." Czechoslovak Mathematical Journal 43.3 (1993): 547-566. <http://eudml.org/doc/31359>.

@article{Gogatishvili1993,
author = {Gogatishvili, Amiran, Pick, Luboš},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hilbert transform; conditions; two-weights weak type inequalities; Hardy-Littlewood maximal operator; Orlicz spaces},
language = {eng},
number = {3},
pages = {547-566},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform},
url = {http://eudml.org/doc/31359},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Gogatishvili, Amiran
AU - Pick, Luboš
TI - Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 3
SP - 547
EP - 566
LA - eng
KW - Hilbert transform; conditions; two-weights weak type inequalities; Hardy-Littlewood maximal operator; Orlicz spaces
UR - http://eudml.org/doc/31359
ER -

References

top
  1. 10.4064/sm-95-3-195-204, Studia Math. 95 (1990), 195–204. (1990) Zbl0718.42018MR1060723DOI10.4064/sm-95-3-195-204
  2. Weights and L log L , Pacific J. Math. 120-1 (1985), 33–45. (1985) MR0808927
  3. 10.1073/pnas.69.10.2838, Proc. Nat. Acad. Sci. USA 69 (1972), 2838–2839. (1972) Zbl0243.44006MR0303226DOI10.1073/pnas.69.10.2838
  4. 10.4064/sm-51-3-241-250, Studia Math. 51 (1974), 241–250. (1974) MR0358205DOI10.4064/sm-51-3-241-250
  5. Weighted bounded mean oscillation and singular integrals, Math. Japonica 22-5 (1978), 529–534. (1978) Zbl0385.26010MR0481968
  6. Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator, Israel J. Math. 67-1 (1989), 95–108. (1989) Zbl0683.42021MR1021364
  7. Weighted norm inequalities and related topics, North Holland, Amsterdam, 1985. (1985) MR0807149
  8. Bounded analytic functions, Academic Press, New York-etc., 1981. (1981) Zbl0469.30024MR0628971
  9. Riesz transforms and maximal functions in φ ( L ) classes, Bull. Acad. Sci. Georgian SSR 137-3 (1990), 489–492. (1990) Zbl0716.44004MR1087544
  10. Maximal functions and φ ( L ) classes, Dokl. Akad. Nauk SSSR 314-3 (1990), 534–536. (1990) MR1094013
  11. A description of weights satisfying the A condition of Muckenhoupt, Proc. Amer. Math. Soc. 90-2 (1984), 253–257. (1984) MR0727244
  12. 10.4064/sm-71-3-277-284, Studia Math. 71 (1982), 277–284. (1982) MR0667316DOI10.4064/sm-71-3-277-284
  13. Maximal inequalities and multipliers in weighted Lizorkin-Triebel spaces, Soviet Math. Dokl. 19-2 (1978), 272–275. (1978) Zbl0396.46034
  14. Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961. (1961) 
  15. Two weights weak type inequalities for the maximal function in the Zygmund class, Function Spaces and Applications. Proc. Conf. Lund 1986, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, Berlin-etc., 1988, pp. 317–320. (1988) MR0942276
  16. 10.1090/S0002-9947-1972-0293384-6, Trans. Amer. Math. Soc. 165 (1972), 207–227. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  17. Two weights weak type inequality for the maximal function in L ( log + L ) K , Constructive Theory of Functions. Proc. Conf. Varna 1987, B. Sendov et al. (eds.), Publ. House Bulg. Acad. Sci., Sofia, 1988, pp. 377–381. (1988) MR0994864
  18. Two-weight weak type maximal inequalities in Orlicz classes, Studia Math. 100-3 (1991), 207–218. (1991) Zbl0752.42012MR1133385
  19. Singular integrals and the differentiability properties of functions, Academic Press, Princeton, 1970. (1970) MR0290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.