Certain cubic multigraphs and their upper embeddability

Ladislav Nebeský

Czechoslovak Mathematical Journal (1995)

  • Volume: 45, Issue: 3, page 385-392
  • ISSN: 0011-4642

How to cite

top

Nebeský, Ladislav. "Certain cubic multigraphs and their upper embeddability." Czechoslovak Mathematical Journal 45.3 (1995): 385-392. <http://eudml.org/doc/31486>.

@article{Nebeský1995,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {upper embeddability; cubic multigraph; imbedding; closed 2-manifold},
language = {eng},
number = {3},
pages = {385-392},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain cubic multigraphs and their upper embeddability},
url = {http://eudml.org/doc/31486},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - Certain cubic multigraphs and their upper embeddability
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 3
SP - 385
EP - 392
LA - eng
KW - upper embeddability; cubic multigraph; imbedding; closed 2-manifold
UR - http://eudml.org/doc/31486
ER -

References

top
  1. Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, 1979. (1979) MR0525578
  2. On chordal-critical graphs (in Russian), Some Topological and Combinatorial Properties of Graphs, Preprint 80.8., IM AN USSR, Kiev, 1980, pp. 24–27. (1980) MR0583198
  3. One-component 2-cell embeddings and the maximum genus of a graph, Some Topological and Combinatorial Properties of Graphs, Preprint 80.8., IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) (1980) MR0583197
  4. The maximum genus of graphs (in Ukrainian, English summary), -Transformations of Graphs (N. P. Homenko, ed.), IM AN USSR, Kiev, 1973, pp. 180–210. (1973) MR0422065
  5. A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401–406. (1978) Zbl0379.05025MR0492309
  6. A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31(106) (1981), 604–613. (1981) MR0631605
  7. N 2 -locally connected graphs and their upper embeddability, Czechoslovak Math. J. 41(116) (1991), 731–735. (1991) MR1134962
  8. Local properties and upper embeddability of connected graphs, Czechoslovak Math. J. 43(118) (1993) (to appear), 241–248. (ARRAY(0x8938bd8)) MR1211746
  9. On graphs embeddable with short faces, Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990, pp. 519–529. (1990) MR1100074
  10. Graphs, Groups, and Surfaces. Revised Edition, North-Holland, Amsterdam, 1984. (1984) MR0780555
  11. 10.1016/0095-8956(79)90058-3, J. Combinatorial Theory Ser. B 26 (1976), 217–225. (1976) MR0532589DOI10.1016/0095-8956(79)90058-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.