The Moore-Penrose inverse of a partitioned morphism in an additive category

Petr Peška

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 4, page 437-452
  • ISSN: 0139-9918

How to cite

top

Peška, Petr. "The Moore-Penrose inverse of a partitioned morphism in an additive category." Mathematica Slovaca 50.4 (2000): 437-452. <http://eudml.org/doc/31747>.

@article{Peška2000,
author = {Peška, Petr},
journal = {Mathematica Slovaca},
keywords = {additive category; Moore-Penrose inverse; partitioned morphism; involution; Greville's algorithm},
language = {eng},
number = {4},
pages = {437-452},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The Moore-Penrose inverse of a partitioned morphism in an additive category},
url = {http://eudml.org/doc/31747},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Peška, Petr
TI - The Moore-Penrose inverse of a partitioned morphism in an additive category
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 4
SP - 437
EP - 452
LA - eng
KW - additive category; Moore-Penrose inverse; partitioned morphism; involution; Greville's algorithm
UR - http://eudml.org/doc/31747
ER -

References

top
  1. ADÁMEK J., Mathematical Structures and Categories, SNTL, Praha, 1982. (Czech) (1982) 
  2. ALBERT A., Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York-London, 1972 [Russian translation: Moskva, 1977]. (1972) Zbl0253.62030MR0331659
  3. BÖRGER R., On the existence of Moore-Penrose-inverses in categories with involution, In: Workshop on Category Theory. Math.-Arbeitspapiere Nr. 28, Uni Bremen, 1987. (1987) 
  4. CALENKO M. S.-SULGEJFER E. G., Osnovy teorii kategorij, Nauka, Moskva, 1974. (Russian) (1974) 
  5. CHIPMAN J. S., Specification problems in regression analysis, In: Proceedings of the Symposium on Theory of Generalized Inverses of Matrices, Lubbock, Texas, 1968 (T. L. Boullion, P. L. Odel, eds.), 1969, pp. 114-176. (1968) MR0254984
  6. CLINE. R. E., Representations for the generalized inverse of partitioned matrix, J. Soc. Ind. Appl. Math. 12 (1964), 5S8-600. (1964) MR0172890
  7. GREVILLE. T. N. E., Some applications of the pseudoinverse of a matrix, SIAM Rev. 2 (1960), 15-22. (1960) Zbl0168.13303MR0110185
  8. MITCHELL B., Theory of Categories, Academic Press, New York-London, 1965. (1965) Zbl0136.00604MR0202787
  9. PEŠKA P., Pseudoinverse Matrices and Algorithms of their Computation in MATLAB, Thesis, Masaryk University, Brno, 1995. (Czech) (1995) 
  10. PUYSTJENS R.-ROBINSON D. W., The Moore-Penrose inverse of a morphism in an additive category, Comm. Algebra 12 (1984), 287-299. (1984) Zbl0534.18004MR0737249
  11. SKULA L., Involution for matrices and generalized, inverses, Linear Algebra Appl. 271 (1998), 283-308. (1998) MR1485173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.