The Moore-Penrose inverse of a partitioned morphism in an additive category

Petr Peška

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 4, page 437-452
  • ISSN: 0139-9918

How to cite

top

Peška, Petr. "The Moore-Penrose inverse of a partitioned morphism in an additive category." Mathematica Slovaca 50.4 (2000): 437-452. <http://eudml.org/doc/31747>.

@article{Peška2000,
author = {Peška, Petr},
journal = {Mathematica Slovaca},
keywords = {additive category; Moore-Penrose inverse; partitioned morphism; involution; Greville's algorithm},
language = {eng},
number = {4},
pages = {437-452},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The Moore-Penrose inverse of a partitioned morphism in an additive category},
url = {http://eudml.org/doc/31747},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Peška, Petr
TI - The Moore-Penrose inverse of a partitioned morphism in an additive category
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 4
SP - 437
EP - 452
LA - eng
KW - additive category; Moore-Penrose inverse; partitioned morphism; involution; Greville's algorithm
UR - http://eudml.org/doc/31747
ER -

References

top
  1. ADÁMEK J., Mathematical Structures and Categories, SNTL, Praha, 1982. (Czech) (1982) 
  2. ALBERT A., Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York-London, 1972 [Russian translation: Moskva, 1977]. (1972) Zbl0253.62030MR0331659
  3. BÖRGER R., On the existence of Moore-Penrose-inverses in categories with involution, In: Workshop on Category Theory. Math.-Arbeitspapiere Nr. 28, Uni Bremen, 1987. (1987) 
  4. CALENKO M. S.-SULGEJFER E. G., Osnovy teorii kategorij, Nauka, Moskva, 1974. (Russian) (1974) 
  5. CHIPMAN J. S., Specification problems in regression analysis, In: Proceedings of the Symposium on Theory of Generalized Inverses of Matrices, Lubbock, Texas, 1968 (T. L. Boullion, P. L. Odel, eds.), 1969, pp. 114-176. (1968) MR0254984
  6. CLINE. R. E., Representations for the generalized inverse of partitioned matrix, J. Soc. Ind. Appl. Math. 12 (1964), 5S8-600. (1964) MR0172890
  7. GREVILLE. T. N. E., Some applications of the pseudoinverse of a matrix, SIAM Rev. 2 (1960), 15-22. (1960) Zbl0168.13303MR0110185
  8. MITCHELL B., Theory of Categories, Academic Press, New York-London, 1965. (1965) Zbl0136.00604MR0202787
  9. PEŠKA P., Pseudoinverse Matrices and Algorithms of their Computation in MATLAB, Thesis, Masaryk University, Brno, 1995. (Czech) (1995) 
  10. PUYSTJENS R.-ROBINSON D. W., The Moore-Penrose inverse of a morphism in an additive category, Comm. Algebra 12 (1984), 287-299. (1984) Zbl0534.18004MR0737249
  11. SKULA L., Involution for matrices and generalized, inverses, Linear Algebra Appl. 271 (1998), 283-308. (1998) MR1485173

NotesEmbed ?

top

You must be logged in to post comments.