Polars and annihilators in representable DRl -monoids and MV -algebras

Jiří Rachůnek

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 1, page 1-12
  • ISSN: 0232-0525

How to cite

top

Rachůnek, Jiří. "Polars and annihilators in representable ${\rm DRl}$-monoids and ${\rm MV}$-algebras." Mathematica Slovaca 51.1 (2001): 1-12. <http://eudml.org/doc/31818>.

@article{Rachůnek2001,
author = {Rachůnek, Jiří},
journal = {Mathematica Slovaca},
keywords = {DRl-monoid; MV-algebra; prime ideal; polar},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Polars and annihilators in representable $\{\rm DRl\}$-monoids and $\{\rm MV\}$-algebras},
url = {http://eudml.org/doc/31818},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Rachůnek, Jiří
TI - Polars and annihilators in representable ${\rm DRl}$-monoids and ${\rm MV}$-algebras
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 1
SP - 1
EP - 12
LA - eng
KW - DRl-monoid; MV-algebra; prime ideal; polar
UR - http://eudml.org/doc/31818
ER -

References

top
  1. BALBES R.-DWINGER P., Distributive Lattices, Univ. of Missouri Press, Columbia, 1974. (1974) Zbl0321.06012MR0373985
  2. BELLUCE L. P., Semisimple algebras of infinite valued logic and bold fuzzy set theory, Canad. Ј. Math. 38 (1986), 1356-1379. (1986) Zbl0625.03009MR0873417
  3. BELLUCE L. P.-SESSA S., Orthogonal decompositions of MV-spaces, Mathware Soft Comput. 4 (1997), 5-22. (1997) Zbl0880.06004MR1463105
  4. CHAЈDA I.-RACHŮNEK Ј., Annihilators in normal autometrized algebras, Czechoslovak Math. Ј. (To appear). 
  5. CHANG C. C., Algebraic analysis of many valued logics, Trans. Amer. Мath. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302
  6. CHANG. C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
  7. CIGNOLI R., Free lattice-ordered abelian groups and varieties of MV-algebras, In: Proc. IX Latin. Amеr Symp. Math. Logic, Part 1. Not. Log. Mat. 38, 1993 pp. 113-118. (1993) Zbl0827.06012MR1332526
  8. DI NOLA A.-LIGUORI F.-SESSA S., Using maximal ideals in the classification of MV-algebras, Portugal. Math. 50 (1993) 87-102. (1993) Zbl0799.06021MR1300588
  9. FILIPOIU A.-GEORGESCU G., On values in relatively normal lattices, Discrete Math 161 (1996), 87-100. (1996) Zbl0872.06008MR1420523
  10. HANSEN M. E., Minimal prime ideals autometrized algebras, Czеchoslovak Math. J. 44(119) (1994), 81-90. (1994) MR1257938
  11. HOO C. S., MV-algebras, ideals and semisimplicity, Math. Japonica 34 (1989), 563-583. (1989) Zbl0677.03041MR1005257
  12. JAKUBÍK J., Direct product decompositions of MV-algebras, Czеchoslovak Math. J. 44(119) (1994), 725-739. (1994) 
  13. JAKUBÍK J., On complete MV-algebras, Czechoslovak Math. J. 45(120) (1995), 473-480. (1995) Zbl0841.06010MR1344513
  14. JAKUBÍK J., On archimedean MV-algebras, Czechoslovak Math. J. 48(123) (1998), 575-582. (1998) Zbl0951.06011MR1637871
  15. JAKUBIK J., Complete generators and maximal completions of MV-algebras, Czechoslovak Math. J. 48(123) (1998), 597-608. (1998) Zbl0951.06010MR1637863
  16. KOVÁŘ T., Two remarks on dually residuated lattice ordered semigroups, Math. Slоvaca (То appear). Zbl0943.06007
  17. MARТINEZ J., Archimedean lattices, Algеbra Univеrsalis 3 (1973), 247-260. (1973) 
  18. MUNDICI D., Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. (1986) MR0819173
  19. RAСHŮNEK J., Prime ideals in autometrized algebras, Сzеchоslоvak Math. J. 37(112) (1987), 65-69. (1987) MR0875128
  20. RAСHŮNEK J., Polars in autometrized algebras, Сzеchоslоvak Math. J. 39(114) (1989), 681-685. (1989) MR1018003
  21. RAСHŮNEK J., Regular ideals in autometrized algebras, Math. Slоvaca 40 (1990), 117-122. (1990) MR1094766
  22. RAСHŮNEK J., Spectra of autometrized lattice algebras, Math. Bоhеmica 123 (1998), 87-94. (1998) MR1618727
  23. RAСHŮNEK J., DRl-semigroups and MV -algebras, Сzеchоslоvak Math. J. 48(123) (1998), 365-372. (1998) 
  24. RAСHŮNEK J., M V -algebras are categorically equivalent to a class of 𝒟ℛ l 1 ( i ) -semi-groups, Math. Bоhеmica 123 (1998), 437-441. (1998) MR1667115
  25. SNODGRASS J. Т.-ТSINAKIS, С, The finite basis theorem for relatively normal lattices, Algеbra Univеrsalis 33 (1995), 40-67. (1995) Zbl0819.06009MR1303631
  26. SWAMY K. L. N., Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797
  27. SWAMY K. L. N., Dually residuated lattice ordered semigroups II, Math. Ann. 160 (1965), 64-71. (1965) Zbl0138.02104MR0191851
  28. SWAMY K. L. N., Dually residuated lattice ordered semigroups III, Math. Ann. 167 (1966), 71-74. (1966) Zbl0158.02601MR0200364
  29. SWAMY K. L. N.-RAO N. P., Ideals in autometrized algebras, J. Austral. Math. Sоc. Sеr. A 24 (1977), 362-374. (1977) Zbl0427.06006MR0469843
  30. SWAMY K. L. N.-SUBBA RAO B. W., Isometries in dually residuated lattice ordered semigroups, Math. Sem. Notes 8 (1980), 369-380. (1980) MR0601906

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.