Prime ideals and polars in DR -monoids and BL-algebras

Jan Kühr

Mathematica Slovaca (2003)

  • Volume: 53, Issue: 3, page 233-246
  • ISSN: 0139-9918

How to cite

top

Kühr, Jan. "Prime ideals and polars in DR$\ell $-monoids and BL-algebras." Mathematica Slovaca 53.3 (2003): 233-246. <http://eudml.org/doc/34577>.

@article{Kühr2003,
author = {Kühr, Jan},
journal = {Mathematica Slovaca},
keywords = {DR-monoid; pseudo BL-algebra; prime ideal; polar},
language = {eng},
number = {3},
pages = {233-246},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Prime ideals and polars in DR$\ell $-monoids and BL-algebras},
url = {http://eudml.org/doc/34577},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Kühr, Jan
TI - Prime ideals and polars in DR$\ell $-monoids and BL-algebras
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 3
SP - 233
EP - 246
LA - eng
KW - DR-monoid; pseudo BL-algebra; prime ideal; polar
UR - http://eudml.org/doc/34577
ER -

References

top
  1. ANDERSON M.-FEIL T., Lattice-Ordered Groups (An Introduction), D. Reidel, Dordrecht, 1988. (1988) Zbl0636.06008MR0937703
  2. DI NOLA A.-GEORGESCU G.-IORGULESCU A., Pseudo B L -algebras: Part I, Mult.-Valued Log. 8 (2002), 673-714. MR1948853
  3. DI NOLA A.-GEORGESCU G.-IORGULESCU A., Pseudo B L -algebras: Part II, Mult.-Valued Log. 8 (2002), 717-750. MR1948854
  4. DVUREČENSKIJ A., On pseudo M V -algebras, Soft Comput. 5 (2001), 347-354. Zbl1081.06010
  5. DVUREČENSKIJ A., States on pseudo M V -algebras, Studia Logica 68 (2001), 301-327. Zbl1081.06010MR1865858
  6. GEORGESCU G.-IORGULESCU A., Pseudo M V -algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  7. GRÄTZER G., General Lattice Theory, Birkhäuser, Basel-Boston-Berlin, 1998. (1998) Zbl0909.06002MR1670580
  8. HÁJEK P., Basic fuzzy logic and B L -algebras, Soft Comput. 2 (1998), 124-128. (1998) 
  9. HANSEN M. E., Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44(119) (1994), 81-90. (1994) Zbl0814.06011MR1257938
  10. KOVÁŘ T., A General Theory of Dually Residuated Lattice Ordered Monoids, Thesis, Palacký Univ., Olomouc, 1996. (1996) 
  11. KOVÁŘ T., Two remarks on dually residuated lattice ordered semigroups, Math. Slovaca 49 (1999), 17-18. (1999) Zbl0943.06007MR1804468
  12. KÜHR J., Ideals of noncommutative D R -monoids, (Submitted). Zbl1081.06017
  13. KÜHR J., Pseudo B L -algebras and D R -monoids, Math. Bohem. (To appear). MR1995573
  14. MARTINEZ J., Archimedean lattices, Algebra Universalis 3 (1973), 247-260. (1973) Zbl0317.06004MR0349503
  15. RACHŮNEK J., Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69. (1987) Zbl0692.06007MR0875128
  16. RACHŮNEK J., Polars in autometrized algebras, Czechoslovak Math. J. 39(114) (1989), 681-685. (1989) Zbl0705.06010MR1018003
  17. RACHŮNEK J., Polars and annihilators in representable D R -monoids and M V -algebras, Math. Slovaca 51 (2001), 1-12. MR1817718
  18. RACHŮNEK J., A non-commutative generalization of M V -algebras, Czechoslovak Math. J. 52(127) (2002), 255-273. Zbl1012.06012MR1905434
  19. SNODGRASS J. T.-TSINAKIS C., The finite basis theorem for relatively normal lattices, Algebra Universalis 33 (1995), 40-67. (1995) Zbl0819.06009MR1303631
  20. SWAMY K. L. N., Dually residuated lattice ordered semigroups I, Math. Ann. 159 (1965), 105-114. (1965) MR0183797
  21. SWAMY K. L. N., Dually residuated lattice ordered semigroups III, Math. Ann. 167 (1966), 71-74. (1966) Zbl0158.02601MR0200364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.