Thin sets defined by a sequence of continuous functions

Zuzana Bukovská

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 3, page 323-344
  • ISSN: 0232-0525

How to cite

top

Bukovská, Zuzana. "Thin sets defined by a sequence of continuous functions." Mathematica Slovaca 49.3 (1999): 323-344. <http://eudml.org/doc/31868>.

@article{Bukovská1999,
author = {Bukovská, Zuzana},
journal = {Mathematica Slovaca},
keywords = {trigonometric thin set; Borel basis; permitted set; well distributed sequence; Salem theorem; Arbault-Erdős theorem},
language = {eng},
number = {3},
pages = {323-344},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Thin sets defined by a sequence of continuous functions},
url = {http://eudml.org/doc/31868},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Bukovská, Zuzana
TI - Thin sets defined by a sequence of continuous functions
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 3
SP - 323
EP - 344
LA - eng
KW - trigonometric thin set; Borel basis; permitted set; well distributed sequence; Salem theorem; Arbault-Erdős theorem
UR - http://eudml.org/doc/31868
ER -

References

top
  1. ARBAULT J., Sur I'Ensemble de Convergence Absolue d'une Serie Trigonometrique, Bull. Soc. Math. France 80 (1952), 253-317. (1952) MR0055476
  2. BARY N. K., Trigonometricheskie ryady, Gos. Izd. Fiz.-Mat. Lit., Moskva, 1961 [English translation: A Treatise on Trigonometric Series, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1964]. (Russian) (1961) MR0126115
  3. BUKOVSKA Z., Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca40 (1990), 53-62. (1990) Zbl0733.43003MR1094972
  4. BUKOVSKÁ Z., Quasinormal convergence, Math. Slovaca 41 (1991), 137 146. (1991) Zbl0757.40004MR1108577
  5. BUKOVSKÁ Z.-BUKOVSKÝ L., Adding small sets to an N-set, Proc. Amer. Math. Soc. 123 (1995), 1367-1373. (1995) Zbl0840.03040MR1285977
  6. BUKOVSKÝ L., Trigonometric thin sets and γ -set, In: Topology Atlas, http://www.unipissing.ca/topology/p/p/a/a/OO.htm, 1997, pp. 22-25. (1997) Zbl0913.42003MR1617080
  7. BUKOVSKÝ L., Thin sets of harmonic analysis in a general setting, Tatra Mt. Math. Publ. 14 (1998), 241-260. (1998) MR1651217
  8. BUKOVSKÝ L.-KHOLSHCHEVNIKOVA N. N.-REPICKÝ M., Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994-95), 454-509. (1994) MR1348075
  9. CSÁSZÁR Á.-LACZKOVICH M., Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463-472. (1975) Zbl0405.26006MR0515347
  10. ELIAS P., A Classification of trigonometrical thin sets and their interrelations, Proc. Amer. Math. Soc. 125 (1997), 1111-1121. (1997) Zbl0871.42007MR1363456
  11. HOST B.-MÉLA J.-F.-PARREAU F., Non singular transformations and spectral analysis of measures, Bull. Soc. Math. France 119 (1991), 33-90. (1991) Zbl0748.43001MR1101939
  12. KAHANE S., Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223. (1993) Zbl0793.42003MR1208819
  13. MARCINKIEWICZ J., Quelques Théorémes sur les Séries et les Fonctions, Bull. Sém. Math. Univ. Wilno 1 (1938), 19-24. (1938) Zbl0019.29803
  14. SALEM R., The absolute convergence of trigonometric series, Duke Math. J. 8 (1941), 317-334. (1941) MR0004325
  15. ZAJÍČEK L., Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987) MR0943561
  16. ZYGMUND A., Trigonometric Series Vol. 1, Cambridge University Press, Cambridge, 1959. (1959) Zbl0085.05601MR0107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.