Thin sets defined by a sequence of continuous functions
Mathematica Slovaca (1999)
- Volume: 49, Issue: 3, page 323-344
- ISSN: 0139-9918
Access Full Article
topHow to cite
topBukovská, Zuzana. "Thin sets defined by a sequence of continuous functions." Mathematica Slovaca 49.3 (1999): 323-344. <http://eudml.org/doc/31868>.
@article{Bukovská1999,
author = {Bukovská, Zuzana},
journal = {Mathematica Slovaca},
keywords = {trigonometric thin set; Borel basis; permitted set; well distributed sequence; Salem theorem; Arbault-Erdős theorem},
language = {eng},
number = {3},
pages = {323-344},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Thin sets defined by a sequence of continuous functions},
url = {http://eudml.org/doc/31868},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Bukovská, Zuzana
TI - Thin sets defined by a sequence of continuous functions
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 3
SP - 323
EP - 344
LA - eng
KW - trigonometric thin set; Borel basis; permitted set; well distributed sequence; Salem theorem; Arbault-Erdős theorem
UR - http://eudml.org/doc/31868
ER -
References
top- ARBAULT J., Sur I'Ensemble de Convergence Absolue d'une Serie Trigonometrique, Bull. Soc. Math. France 80 (1952), 253-317. (1952) MR0055476
- BARY N. K., Trigonometricheskie ryady, Gos. Izd. Fiz.-Mat. Lit., Moskva, 1961 [English translation: A Treatise on Trigonometric Series, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1964]. (Russian) (1961) MR0126115
- BUKOVSKA Z., Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca40 (1990), 53-62. (1990) Zbl0733.43003MR1094972
- BUKOVSKÁ Z., Quasinormal convergence, Math. Slovaca 41 (1991), 137 146. (1991) Zbl0757.40004MR1108577
- BUKOVSKÁ Z.-BUKOVSKÝ L., Adding small sets to an N-set, Proc. Amer. Math. Soc. 123 (1995), 1367-1373. (1995) Zbl0840.03040MR1285977
- BUKOVSKÝ L., Trigonometric thin sets and -set, In: Topology Atlas, http://www.unipissing.ca/topology/p/p/a/a/OO.htm, 1997, pp. 22-25. (1997) Zbl0913.42003MR1617080
- BUKOVSKÝ L., Thin sets of harmonic analysis in a general setting, Tatra Mt. Math. Publ. 14 (1998), 241-260. (1998) MR1651217
- BUKOVSKÝ L.-KHOLSHCHEVNIKOVA N. N.-REPICKÝ M., Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994-95), 454-509. (1994) MR1348075
- CSÁSZÁR Á.-LACZKOVICH M., Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463-472. (1975) Zbl0405.26006MR0515347
- ELIAS P., A Classification of trigonometrical thin sets and their interrelations, Proc. Amer. Math. Soc. 125 (1997), 1111-1121. (1997) Zbl0871.42007MR1363456
- HOST B.-MÉLA J.-F.-PARREAU F., Non singular transformations and spectral analysis of measures, Bull. Soc. Math. France 119 (1991), 33-90. (1991) Zbl0748.43001MR1101939
- KAHANE S., Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 186-223. (1993) Zbl0793.42003MR1208819
- MARCINKIEWICZ J., Quelques Théorémes sur les Séries et les Fonctions, Bull. Sém. Math. Univ. Wilno 1 (1938), 19-24. (1938) Zbl0019.29803
- SALEM R., The absolute convergence of trigonometric series, Duke Math. J. 8 (1941), 317-334. (1941) MR0004325
- ZAJÍČEK L., Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987) MR0943561
- ZYGMUND A., Trigonometric Series Vol. 1, Cambridge University Press, Cambridge, 1959. (1959) Zbl0085.05601MR0107776
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.