Permitted trigonometric thin sets and infinite combinatorics

Miroslav Repický

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 609-627
  • ISSN: 0010-2628

Abstract

top
We investigate properties of permitted trigonometric thin sets and construct uncountable permitted sets under some set-theoretical assumptions.

How to cite

top

Repický, Miroslav. "Permitted trigonometric thin sets and infinite combinatorics." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 609-627. <http://eudml.org/doc/248793>.

@article{Repický2001,
abstract = {We investigate properties of permitted trigonometric thin sets and construct uncountable permitted sets under some set-theoretical assumptions.},
author = {Repický, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {permitted trigonometric thin sets; set of perfect measure zero; set of uniform measure zero; s-set; permitted trigonometric thin sets; set of perfect measure zero; set of uniform measure zero; s-set; Aronszajn tree},
language = {eng},
number = {4},
pages = {609-627},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Permitted trigonometric thin sets and infinite combinatorics},
url = {http://eudml.org/doc/248793},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Repický, Miroslav
TI - Permitted trigonometric thin sets and infinite combinatorics
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 609
EP - 627
AB - We investigate properties of permitted trigonometric thin sets and construct uncountable permitted sets under some set-theoretical assumptions.
LA - eng
KW - permitted trigonometric thin sets; set of perfect measure zero; set of uniform measure zero; s-set; permitted trigonometric thin sets; set of perfect measure zero; set of uniform measure zero; s-set; Aronszajn tree
UR - http://eudml.org/doc/248793
ER -

References

top
  1. Arbault M.J., Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253-317. (1952) Zbl0048.04202MR0055476
  2. Bartoszyński T., Recław I., Not every γ -set is strongly meager, Set theory (Bartoszynski T. et al., eds.). Annual Boise extravaganza in set theory conference, 1992/1994, Boise State University, Boise, ID, USA Contemp. Math. 192 (1996), 25-29. (1996) MR1367132
  3. Bartoszyński T., Scheepers M., Remarks on sets related to trigonometric series, Topology Appl. 64 (1995), 133-140. (1995) MR1340865
  4. Bary N.K., azbuka Trigonometricheskie ryady, Moskva (1961), English translation A Treatise on Trigonometric Series Macmillan New York (1964). (1964) MR0171116
  5. Bukovská Z., Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53-62. (1990) MR1094972
  6. Bukovská Z., Thin sets defined by a sequence of continuous functions, Math. Slovaca 49 (1999), 3 323-344. (1999) MR1728243
  7. Bukovská Z., Bukovský L., Adding small sets to an N-set, Proc. Amer. Math. Soc. 123 (1995), 1367-1373. (1995) MR1285977
  8. Bukovský L., Thin sets in a general setting, Tatra Mountains Mathematical Publications 14 (1998), 241-260. (1998) MR1651217
  9. Bukovský L., Kholshchevnikova N.N., Repický M., Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20 (1994/95), 454-509. (1994/95) MR1348075
  10. Bukovský L., Recław I., Repický M., Spaces not distinguishing convergence of real-valued functions, Topology Appl. 112 (2001), 13-40. (2001) 
  11. Galvin F., Miller A.W., γ -sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145-155. (1984) Zbl0551.54001MR0738943
  12. Just W., Miller A.W., Scheepers M., Szeptycki P.J., The combinatorics of open covers, II, Topology Appl. 73 (1996), 3 241-266. (1996) Zbl0870.03021MR1419798
  13. Kada M., Kamo S., New cardinal invariants related to pseudo-Dirichlet sets, preprint, 1996. 
  14. Kahane S., Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37 (1993), 2 186-223. (1993) Zbl0793.42003MR1208819
  15. Kholshchevnikova N.N., Uncountable R- and N-sets, Math. Notes 38 (1985), 847-851. (1985) MR0808896
  16. Kholshchevnikova N.N., azbuka Primenenie teoretiko-mnozhestvennykh metodov v teorii ryadov, PhD Thesis Ross. Akad. Nauk Mat. Inst. (V. A. Steklov), Moskva (1993). (1993) 
  17. Laflamme C., Combinatorial aspects of F σ filters with an application to N-sets, Proc. Amer. Math. Soc. 125 (1997), 10 3019-3025. (1997) MR1401747
  18. Miller A.W., Some properties of measure and category, Trans. Amer. Math. Soc. 226 (1981), 93-144. (1981) Zbl0472.03040MR0613787
  19. Repický M., A family of permitted trigonometric thin sets, Proc. Amer. Math. Soc. 125 (1997), 1 137-144. (1997) MR1343721
  20. Repický M., Towers and permitted trigonometric thin sets, Real Anal. Exchange 21 (1995/96), 648-655. (1995/96) MR1407277
  21. Repický M., Mycielski ideal and the perfect set theorem, preprint, 2001. MR2053988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.