Non singular transformations and spectral analysis of measures

Bernard Host; Jean-François Méla; François Parreau

Bulletin de la Société Mathématique de France (1991)

  • Volume: 119, Issue: 1, page 33-90
  • ISSN: 0037-9484

How to cite

top

Host, Bernard, Méla, Jean-François, and Parreau, François. "Non singular transformations and spectral analysis of measures." Bulletin de la Société Mathématique de France 119.1 (1991): 33-90. <http://eudml.org/doc/87616>.

@article{Host1991,
author = {Host, Bernard, Méla, Jean-François, Parreau, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {measures; nonsingular dynamical systems; subgroups of the circle; eigenvalue groups; groups of quasi-invariance},
language = {eng},
number = {1},
pages = {33-90},
publisher = {Société mathématique de France},
title = {Non singular transformations and spectral analysis of measures},
url = {http://eudml.org/doc/87616},
volume = {119},
year = {1991},
}

TY - JOUR
AU - Host, Bernard
AU - Méla, Jean-François
AU - Parreau, François
TI - Non singular transformations and spectral analysis of measures
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 1
SP - 33
EP - 90
LA - eng
KW - measures; nonsingular dynamical systems; subgroups of the circle; eigenvalue groups; groups of quasi-invariance
UR - http://eudml.org/doc/87616
ER -

References

top
  1. [1] AARONSON (J.). — The eigenvalues of non-singular transformations, Israel J. of Math., t. 45, 1983, p. 297-312. Zbl0554.28014MR86c:28041
  2. [2] AARONSON (J.). — The intrinsic normalizing constants of transformations preserving infinite measures, J. Analyse Math., (to appear). Zbl0644.28013
  3. [3] AARONSON (J.) and NADKARNI (M.). — L∞ eigenvalues and L2 spectra of non-singular transformations, Proc. London Math. Soc., t. 3 55, 1988, p. 538-570. Zbl0636.28010MR88j:28012
  4. [4] ARBAULT (J.). — Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France, t. 80 4, 1952, p. 253-317. Zbl0048.04202MR14,1080d
  5. [5] BARY (N.). — A treatise on trigonometric series, vol 2. — Pergamon Press, Oxford, 1964. Zbl0129.28002MR30 #1347
  6. [6] BROWN (G.) and MORAN (W.). — Products of random variables and Kakutani's criterion for orthogonality of product measures, J. London Math. Soc., t. 2 10, 1975, p. 401-405. Zbl0311.60016MR51 #11632
  7. [7] BROWN (G.) and MORAN (W.). — Bernoulli measure algebras, Acta Math., t. 132, 1974, p. 77-109. Zbl0278.43004MR54 #5743
  8. [8] BOURBAKI (N.). — Topologie générale, chap. 9. — Hermann, Paris, 1974. 
  9. [9] CONNES (A.). — Une classification des facteurs de type III, Ann. Sci. École Norm. Sup., t. 6, 1973, p. 133-252. Zbl0274.46050MR49 #5865
  10. [10] CONNES (A.). — On the Hierarchy of W. Krieger, Illinois J. of Math., t. 19 3, 1975, p. 428-432. Zbl0311.28014MR54 #946
  11. [11] FURSTENBERG (H.) and WEISS (B.). — The finite multipliers of infinite ergodic transformations, Lecture Notes in Mathematics, 688, Springer, 1978, p. 127-132. Zbl0385.28009MR80b:28023
  12. [12] GRAHAM (C.) and MCGEHEE (O.C.). — Essays in Commutative Harmonic Analysis. — Springer-Verlag, 1979. Zbl0439.43001MR81d:43001
  13. [13] HAMACHI (T.), OKA (Y.) and OSIKAWA (M.). — A classification of ergodic non-singular transformation groups, Mem. Fac. Sci. Kyushu Univ., t. A 28, 1974, p. 113-133. Zbl0293.28011MR55 #5839
  14. [14] HAMACHI (T.), OKA (Y.) and OSIKAWA (M.). — Flows associated with ergodic non-singular transformation groups, Publ. RIMS, Kyoto Univ., t. 11, 1975, p. 31-50. Zbl0316.28007MR52 #10998
  15. [15] HELSON (H.). — Compact groups with ordered duals, VII, J. London Math. Soc., t. 2 20, 1979, p. 509-515. Zbl0475.43002MR81m:43013
  16. [16] HELSON (H.). — Cocycles on the circle, J. Operator Theory, t. 16, 1986, p. 189-199. Zbl0644.43003MR88f:22020
  17. [17] HELSON (H.) and MERRILL (K.). — Cocycles on the circle II. Operator Theory : Advances and Applications, 28 c. — Birkhäuser, 1988. Zbl0673.43004MR89j:22008
  18. [18] HOST (B.), MÉLA (J.F.) and PARREAU (F.). — Analyse harmonique des mesures, Astérisque, 135-136. — Société Mathématique de France, Paris, 1986. Zbl0589.43001MR88a:43005
  19. [19] ITO (Y.), KAMAE (T.) and SHIOKAWA. — Point spectrum and Haussdorff dimension. Number Theory and Combinatorics, p. 209-227 (ed. J. Akiyama et al.). — World Scientific Publishing Co., Tokyo, 1985. Zbl0614.28013MR87h:28018
  20. [20] KAHANE (J.P) and SALEM (R.). — Ensembles parfaits et séries trigonométriques. — Hermann, 1963. Zbl0112.29304MR28 #3279
  21. [21] KAKUTANI (S.). — On the equivalence of infinite product measures, Ann. of Math., t. 49, 1948, p. 214-224. Zbl0030.02303MR9,340e
  22. [22] KILMER (S.J.) and SAEKI (S.). — On Riesz Product measures : mutual absolute continuity and singularity, Ann. Inst. Fourier, t. 38 2, 1988, p. 63-69. Zbl0633.43001MR90a:42006
  23. [23] KRIEGER (W.). — On ergodic Flows and the Isomorphism of Factors, Math. Ann., t. 223, 1976, p. 19-70. Zbl0332.46045MR54 #3430
  24. [24] KURATOWSKI (C.). — Topologie I. — Warszawa-Lwow, 1933. 
  25. [25] LEDRAPPIER (F.). — Des produits de Riesz comme mesures spectrales, Ann. Inst. Henri Poincaré, t. 6 4, 1970, p. 335-344. Zbl0239.43001MR45 #5785
  26. [26] LINDAHL (L.) and POULSEN (F.). — Thin sets in Harmonic Analysis, Lecture Notes. — Marcel Dekker, 1971. Zbl0226.43006MR52 #14800
  27. [27] LOSERT (V.) and SCHMIDT (K.). — A class of probability measures arising from some problems in ergodic theory, in Probability measures on groups, Springer Lecture Notes in Mathematics, 706, 1979, p. 124-138. Zbl0467.60011MR81a:28016
  28. [28] MACKEY (G.W.). — Borel structure in groups and their duals, Trans. Am. Math. Soc., t. 85, 1957, p. 134-165. Zbl0082.11201MR19,752b
  29. [29] MANDREKAR (V.) and NADKARNI (M.). — On ergodic quasi-invariant measures on the circle group, J. Funct. Anal., t. 3, 1969, p. 157-163. Zbl0174.31203MR39 #407
  30. [30] MÉLA (J.F.). — Groupes de valeurs propres des systèmes dynamiques et sous-groupes saturés du cercle, C.R. Acad. Sci. Paris, Série I Math., t. 296, 1983, p. 419-422. Zbl0547.28011MR85a:22017
  31. [31] MÉLA (J.F.). — Quasi-invariant measures and Fourier properties, Commutative Harmonic Analysis, Am. Math. Soc. Contemporary Mathematics, vol. 91, 1989, p. 193-215. Zbl0695.43002MR92j:43001
  32. [32] MOORE (C.C.) and SCHMIDT (K.). — Coboundaries and homomorphisms for non-singular group actions and a problem of H. Helson, Proc. London Math. Soc, t. 3 40, 1980, p. 443-475. Zbl0428.28014MR82a:22007
  33. [33] OSIKAWA (M.). — Point spectra of non-singular flows, Publ. Inst. Math. Sci. Kyoto, t. 13, 1977, p. 167-172. Zbl0369.28016MR56 #12232
  34. [34] PARREAU (F.). — Ergodicité et pureté des produits de Riesz, Ann. Inst. Fourier, t. 40 2, 1990, p. 391-405. Zbl0687.43001MR91g:42009
  35. [35] PARREAU (F.). — Measures with real spectra, Inventiones Math., t. 98, 1989, p. 311-330. Zbl0707.43002MR91f:43004
  36. [36] PARTHASARATHY (K.R.). — Probability measures on metric spaces. — Academic Press, 1967. Zbl0153.19101MR37 #2271
  37. [37] PEYRIÈRE (J.). — Étude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier, t. 25 2, 1975, p. 127-169. Zbl0302.43003MR53 #8771
  38. [38] QUEFFÉLEC (M.). — Substitution Dynamical Systems, Spectral Analysis. — Springer Lecture Notes, 1294, 1987. Zbl0642.28013MR89g:54094
  39. [39] RUDIN (W.). — Fourier Analysis on groups. — Interscience Publishers, 1962. Zbl0107.09603MR27 #2808
  40. [40] SCHMIDT (K.). — Cocycles on ergodic transformation groups. — Macmillan lectures in Math, 1, 1977. Zbl0421.28017MR58 #28262
  41. [41] SCHMIDT (K.). — Spectra of ergodic group actions, Israel J. Math., t. 41, 1982, p. 151-153. Zbl0498.28018MR83m:28022
  42. [42] VARADARAJAN (V.S.). — Geometry of Quantum Theory, vol. II. — Van Nostrand, 1970. Zbl0194.28802MR57 #11400
  43. [43] VAROPOULOS (N.). — Groups of continuous functions in Harmonic analysis, Acta Math., t. 125, 1970, p. 109-154. Zbl0214.38102MR43 #7868

Citations in EuDML Documents

top
  1. András Biró, Characterizations of groups generated by Kronecker sets
  2. Zuzana Bukovská, Relationships between families of thin sets
  3. Mélanie Guenais, Singularité des produits de Anzai associés aux fonctions caractéristiques d'un intervalle
  4. Tamás Keleti, Difference functions of periodic measurable functions
  5. Zuzana Bukovská, Thin sets defined by a sequence of continuous functions
  6. Mélanie Guenais, Spectres de M-extensions aléatoires
  7. Sébastien Ferenczi, Systems of finite rank
  8. Guy Barat, Valérie Berthé, Pierre Liardet, Jörg Thuswaldner, Dynamical directions in numeration

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.