Some sequence spaces defined by a modulus

Serpil Pehlivan; Brian Fisher

Mathematica Slovaca (1995)

  • Volume: 45, Issue: 3, page 275-280
  • ISSN: 0139-9918

How to cite

top

Pehlivan, Serpil, and Fisher, Brian. "Some sequence spaces defined by a modulus." Mathematica Slovaca 45.3 (1995): 275-280. <http://eudml.org/doc/31887>.

@article{Pehlivan1995,
author = {Pehlivan, Serpil, Fisher, Brian},
journal = {Mathematica Slovaca},
keywords = {sequence spaces; strong almost convergence; modulus function},
language = {eng},
number = {3},
pages = {275-280},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Some sequence spaces defined by a modulus},
url = {http://eudml.org/doc/31887},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Pehlivan, Serpil
AU - Fisher, Brian
TI - Some sequence spaces defined by a modulus
JO - Mathematica Slovaca
PY - 1995
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 45
IS - 3
SP - 275
EP - 280
LA - eng
KW - sequence spaces; strong almost convergence; modulus function
UR - http://eudml.org/doc/31887
ER -

References

top
  1. CONNOR J. S., The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63. (1988) Zbl0653.40001MR0954458
  2. DAS G.-SAHOO S. K., On some sequence spaces, J. Math. Anal. Appl. 164 (1992), 381-398. (1992) Zbl0778.46011MR1151042
  3. FAST H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. (1951) Zbl0044.33605MR0048548
  4. FREEDMAN A. R., SEMBER J. J, Densities and summability, Pacific J. Math. 95 (1981), 293-305. (1981) Zbl0504.40002MR0632187
  5. LORENTZ G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. (1948) Zbl0031.29501MR0027868
  6. MADDOX I. J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355. (1967) Zbl0156.06602MR0221143
  7. MADDOX I. J., A new type of convergence, Math. Proc. Cambridge Philos. Soc. 83 (1978), 61-64. (1978) Zbl0392.40001MR0493034
  8. MADDOX I. J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166. (1986) Zbl0631.46010MR0838663
  9. MADDOX I. J., Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Cambridge Philos. Soc. 101 (1987), 523-527. (1987) MR0878899
  10. NAKANO H., Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49. (1953) Zbl0050.33402MR0058882
  11. PEHLIVAN S., Sequence space defined by a modulus function, Erc. Univ. J. Science 5 (1989), 875-880. (1989) 
  12. RUCKLE W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978. (1973) Zbl0267.46008MR0338731

NotesEmbed ?

top

You must be logged in to post comments.