Some sequence spaces defined by a modulus

Serpil Pehlivan; Brian Fisher

Mathematica Slovaca (1995)

  • Volume: 45, Issue: 3, page 275-280
  • ISSN: 0232-0525

How to cite

top

Pehlivan, Serpil, and Fisher, Brian. "Some sequence spaces defined by a modulus." Mathematica Slovaca 45.3 (1995): 275-280. <http://eudml.org/doc/31887>.

@article{Pehlivan1995,
author = {Pehlivan, Serpil, Fisher, Brian},
journal = {Mathematica Slovaca},
keywords = {sequence spaces; strong almost convergence; modulus function},
language = {eng},
number = {3},
pages = {275-280},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Some sequence spaces defined by a modulus},
url = {http://eudml.org/doc/31887},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Pehlivan, Serpil
AU - Fisher, Brian
TI - Some sequence spaces defined by a modulus
JO - Mathematica Slovaca
PY - 1995
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 45
IS - 3
SP - 275
EP - 280
LA - eng
KW - sequence spaces; strong almost convergence; modulus function
UR - http://eudml.org/doc/31887
ER -

References

top
  1. CONNOR J. S., The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63. (1988) Zbl0653.40001MR0954458
  2. DAS G.-SAHOO S. K., On some sequence spaces, J. Math. Anal. Appl. 164 (1992), 381-398. (1992) Zbl0778.46011MR1151042
  3. FAST H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. (1951) Zbl0044.33605MR0048548
  4. FREEDMAN A. R., SEMBER J. J, Densities and summability, Pacific J. Math. 95 (1981), 293-305. (1981) Zbl0504.40002MR0632187
  5. LORENTZ G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. (1948) Zbl0031.29501MR0027868
  6. MADDOX I. J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355. (1967) Zbl0156.06602MR0221143
  7. MADDOX I. J., A new type of convergence, Math. Proc. Cambridge Philos. Soc. 83 (1978), 61-64. (1978) Zbl0392.40001MR0493034
  8. MADDOX I. J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166. (1986) Zbl0631.46010MR0838663
  9. MADDOX I. J., Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Cambridge Philos. Soc. 101 (1987), 523-527. (1987) MR0878899
  10. NAKANO H., Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49. (1953) Zbl0050.33402MR0058882
  11. PEHLIVAN S., Sequence space defined by a modulus function, Erc. Univ. J. Science 5 (1989), 875-880. (1989) 
  12. RUCKLE W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978. (1973) Zbl0267.46008MR0338731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.