Inclusion theorems for some sets of sequences defined by ϕ -functions

Enno Kolk; Annemai Mölder

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 3, page 267-279
  • ISSN: 0139-9918

How to cite

top

Kolk, Enno, and Mölder, Annemai. "Inclusion theorems for some sets of sequences defined by $\varphi $-functions." Mathematica Slovaca 54.3 (2004): 267-279. <http://eudml.org/doc/34599>.

@article{Kolk2004,
author = {Kolk, Enno, Mölder, Annemai},
journal = {Mathematica Slovaca},
keywords = {modulus; Orlicz function; sequence space of Maddox},
language = {eng},
number = {3},
pages = {267-279},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Inclusion theorems for some sets of sequences defined by $\varphi $-functions},
url = {http://eudml.org/doc/34599},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Kolk, Enno
AU - Mölder, Annemai
TI - Inclusion theorems for some sets of sequences defined by $\varphi $-functions
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 3
SP - 267
EP - 279
LA - eng
KW - modulus; Orlicz function; sequence space of Maddox
UR - http://eudml.org/doc/34599
ER -

References

top
  1. BHARDWAJ V. K.-SINGH N., Some sequence spaces defined by Orlicz functions, Demonstratio Math. 33 (2000), 571-582. Zbl0966.46002MR1791722
  2. CONNOR J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198. (1989) Zbl0693.40007MR1006746
  3. DEDAGICH F.-ZABREIKO P. P., On superposition operators in p spaces, Sibirsk. Mat. Zh. 28 (1987), 86-98. (Russian) (1987) MR0886856
  4. Encyclopaedia of Mathematics, Vol. 1 (M. Hazewinkel, ed.), Kluwer Academic Publishers, Dortrecht, 1995. (1995) Zbl0829.00004
  5. ESI A., Some new sequence spaces defined by a modulus function, Math. Slovaca 49 (1999), 53-61. (1999) Zbl0946.46007MR1804473
  6. ESI A., Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica27 (1999), 71-76. (1999) Zbl0915.40001MR1681557
  7. GHOSH D.-SRIVASTAVA P. D., On some vector valued sequence space using Orlicz function, Glas. Mat. Ser. Ill 34 (1999), 253-261. (1999) Zbl0953.46002MR1739623
  8. GRINNELL R. J., Functions preserving sequence spaces, Real Anal. Exchange 25 (1999/2000), 239-256. (1999) MR1758005
  9. GROSSE-ERDMANN K.-G., The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-302. (1992) Zbl0777.46008MR1162345
  10. KOLK E., Sequence spaces defined by a sequence of moduli, In: Abstracts of conference "Problems of Pure and Applied Mathematics", Tartu, 1990, pp. 131-134. (1990) 
  11. KOLK E., On strong boundedness and summability with respect to a sequence of moduli, Tartu Ul. Toimetised 960 (1993), 41-50. (1993) Zbl1210.40015MR1231936
  12. KOLK E., Inclusion theorems for some sequence spaces defined by a sequence of moduli, Tartu Ul. Toimetised 970 (1994), 65-72. (1994) Zbl1210.40010MR1337906
  13. KOLK E., F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547-1566. (1997) Zbl0920.46002MR1608597
  14. LINDENSTRAUSS J.-TZAFRIRI L., Classical Banach Spaces. I. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer-Verlag, Berlin-New York, 1977. (1977) Zbl0362.46013MR0500056
  15. MADDOX I. J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166. (1986) Zbl0631.46010MR0838663
  16. MADDOX I. J., A class of dual sequence spaces, Tartu Ul. Toimetised 960 (1993), 67-74. (1993) Zbl1210.46008MR1231938
  17. MALKOWSKY E.-SAVAS E., Some λ -sequence spaces defined by a modulus, Arch. Math. (Brno) 36 (2000), 219-228. Zbl1046.40011MR1785040
  18. MUSIELAK J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. (1983) Zbl0557.46020MR0724434
  19. PARASHAR S. D.-CHOUDHARY B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419-428. (1994) Zbl0802.46020MR1272814
  20. PEHLIVAN S., On strong almost convergence and uniform statistical convergence, Acta Comment. Univ. Tartu. Math. 2 (1998), 19-22. (1998) Zbl0944.40001MR1714732
  21. PEHLIVAN S.-FISHER B., Some sequence spaces defined by a modulus, Math. Slovaca 45 (1995), 275-280. (1995) Zbl0852.40002MR1361822
  22. RUCKLE W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978. (1973) Zbl0267.46008MR0338731
  23. SOOMER V., On sequence spaces defined by a sequence of moduli and an extension of Kuttner's theorem, Acta Comment. Univ. Tartu. Math. 2 (1998), 29-38. (1998) Zbl0944.40009MR1714729

NotesEmbed ?

top

You must be logged in to post comments.