Generalizations of Boolean algebras. An attribute exploration

Léonard Kwuida; Christian Pech; Heiko Reppe

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 2, page 145-165
  • ISSN: 0139-9918

How to cite

top

Kwuida, Léonard, Pech, Christian, and Reppe, Heiko. "Generalizations of Boolean algebras. An attribute exploration." Mathematica Slovaca 56.2 (2006): 145-165. <http://eudml.org/doc/31994>.

@article{Kwuida2006,
author = {Kwuida, Léonard, Pech, Christian, Reppe, Heiko},
journal = {Mathematica Slovaca},
keywords = {Boolean algebra; concept algebra; Stone algebra; de Morgan algebra; Ockham algebra; Kleene algebra; attribute exploration; triple construction; formal concept analysis},
language = {eng},
number = {2},
pages = {145-165},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Generalizations of Boolean algebras. An attribute exploration},
url = {http://eudml.org/doc/31994},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kwuida, Léonard
AU - Pech, Christian
AU - Reppe, Heiko
TI - Generalizations of Boolean algebras. An attribute exploration
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 2
SP - 145
EP - 165
LA - eng
KW - Boolean algebra; concept algebra; Stone algebra; de Morgan algebra; Ockham algebra; Kleene algebra; attribute exploration; triple construction; formal concept analysis
UR - http://eudml.org/doc/31994
ER -

References

top
  1. BERAN L., Orthomodular Lattices, Algebraic Approach, Academia, Prague, 1984. (1984) MR0785005
  2. BOOLE G., An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Macmillan/Dover PubL, London/New York, 1854/1958. (1958) MR0085180
  3. BURMEISTER P., Formal Concept Analysis with ConImp: Introduction to the Basic Features, TU-Darmstadt, Darmstadt, 2003; http://www.mathematik.tu-darmstadt.de/~burmeister/ConImpIntro.pdf. 
  4. BLYTH T. T.-VARLET J. J., Ockham Algebras, Oxford Univ. Press, Oxford, 1994. (1994) Zbl0835.06011MR1315526
  5. CHAJDA I.-GŁAZEK K., A Basic Course on General Algebra, Zielona Góra Technical University Press, 2000. Zbl0970.08001MR1783394
  6. CHEN C. C.-GRÄTZER G., Stone lattices. I: Construction theorems, Canad. J. Math. 21 (1969), 884-894. (1969) Zbl0184.03303MR0242737
  7. DAU F., Implications of properties concerning complementation in finite lattices, In: Contributions to General Algebra 12 (D. Dorninger et al., eds.), Proceedings of the 58th workshop on general algebra "58. Arbeitstagung Allgemeine Algebra", Vienna, Austria, June 3-6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 145-154. (1999) MR1777655
  8. DILWORTH R. R., Lattices with unique complements, Trans. Amer. Math. Soc. 57 (1945), 123-154. (1945) Zbl0060.06103MR0012263
  9. DÜNTSCH, L, A logic for rough sets, Theoret. Comput. Sci. 179 (1997), 427-436. (1997) MR1454599
  10. DZIK W., Lattices adequate for intuitionistic predicate logic, In: Mathematical Logic. Proceedings of the Summer School and Conference Dedicated to the Ninetieth Anniversary of Arend Heyting (1898-1980), Held in Chaika, Bulgaria, September 13-23, 1988, Plenum Press, New York, 1990, pp. 293-297. (1980) MR1084001
  11. FRINK O., Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514. (1962) Zbl0114.01602MR0140449
  12. HINTIKKA J., Quantum logic as a fragment of independence-friendly logic, J. Philos. Logic 31 (2002), 197-209. Zbl1011.03049MR1917265
  13. GANTER B.-KWUIDA L., Representable Weak Dicomplementations on Finite Lattices, Contributions to General Algebra 14, Verlag Johannes Heyn, Klagenfurt, 2004. Zbl1043.06010MR2059565
  14. GANTER B.-WILLE R., Formal Concept Analysis, Mathematical Foundations, Springer, Berlin, 1999. (1999) Zbl0909.06001MR1707295
  15. GLIVENKO V., Sur quelques points de la logique de M. Brouwer, Bulletin Acad. Bruxelles 15 (1929), 183-188. (1929) 
  16. KALMBACH G., Othomodular Lattices, London Math. Soc. Monogr. 18, Academic Press Inc. (London) Ltd., London, 1983. (1983) 
  17. KATRIŇÁK T., Über eine Konstruktion der distributiven pseudokomplementätren Verbände, Math. Nachr. 53 (1972). (1972) MR0316334
  18. KATRIŇÁK T., The structure of distributive double p-algebras, Regularity and congruences, Algebra Universalis 3 (1992), 238-246. (1992) MR0332598
  19. KATRIŇÁK T.-MEDERLY P., Constructions of p-algebras, Algebra Universalis 17 (1983), 288-316. (1983) Zbl0536.06004MR0729938
  20. KWUIDA L., Dicomplemented Lattices, A Contextual Generalization of Boolean Algebras, Shaker Verlag, Aachen, 2004. Zbl1129.06006
  21. LAKSER H., The structure of pseudocomplemented distributive lattices, I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342. (1971) Zbl0244.06011MR0274358
  22. SALIІ V. V., Lattices with Unique Complements, Transl. Math. Monogr. 69, Amer. Math. Soc, Providence, RI, 1988. (1988) MR0931777
  23. STONE M. H., The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37-111. (1936) Zbl0014.34002MR1501865
  24. URQUHART A., Lattices with a dual homomorphic operation, Studia Logica 38 (1979), 201-209. (1979) Zbl0425.06008MR0544616
  25. WILLE R., Restructuring lattice theory: an approach based on hierarchies of concepts, In: Ordered Sets (I. Rival, ed.), D. Reidel Publishing Company, Dordrecht-Boston-London, 1982, pp. 445-470. (1982) Zbl0491.06008MR0661303
  26. WILLE R., Boolean concept logic, In: Conceptual Structures: Logical, Linguistic, and Computational Issues. 8th International Conference, ICCS 2000, Darmstadt, Germany, August 14-18, 2000. Proceedings (B. Ganter, G. W. Mineau, eds.), Lecture Notes in Artificial Intelligence 1867, Springer, Heidelberg, 2000, pp. 317-331. Zbl0973.03035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.