Generalizations of Boolean algebras. An attribute exploration
Léonard Kwuida; Christian Pech; Heiko Reppe
Mathematica Slovaca (2006)
- Volume: 56, Issue: 2, page 145-165
 - ISSN: 0139-9918
 
Access Full Article
topHow to cite
topKwuida, Léonard, Pech, Christian, and Reppe, Heiko. "Generalizations of Boolean algebras. An attribute exploration." Mathematica Slovaca 56.2 (2006): 145-165. <http://eudml.org/doc/31994>.
@article{Kwuida2006,
	author = {Kwuida, Léonard, Pech, Christian, Reppe, Heiko},
	journal = {Mathematica Slovaca},
	keywords = {Boolean algebra; concept algebra; Stone algebra; de Morgan algebra; Ockham algebra; Kleene algebra; attribute exploration; triple construction; formal concept analysis},
	language = {eng},
	number = {2},
	pages = {145-165},
	publisher = {Mathematical Institute of the Slovak Academy of Sciences},
	title = {Generalizations of Boolean algebras. An attribute exploration},
	url = {http://eudml.org/doc/31994},
	volume = {56},
	year = {2006},
}
TY  - JOUR
AU  - Kwuida, Léonard
AU  - Pech, Christian
AU  - Reppe, Heiko
TI  - Generalizations of Boolean algebras. An attribute exploration
JO  - Mathematica Slovaca
PY  - 2006
PB  - Mathematical Institute of the Slovak Academy of Sciences
VL  - 56
IS  - 2
SP  - 145
EP  - 165
LA  - eng
KW  - Boolean algebra; concept algebra; Stone algebra; de Morgan algebra; Ockham algebra; Kleene algebra; attribute exploration; triple construction; formal concept analysis
UR  - http://eudml.org/doc/31994
ER  - 
References
top- BERAN L., Orthomodular Lattices, Algebraic Approach, Academia, Prague, 1984. (1984) MR0785005
 - BOOLE G., An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Macmillan/Dover PubL, London/New York, 1854/1958. (1958) MR0085180
 - BURMEISTER P., Formal Concept Analysis with ConImp: Introduction to the Basic Features, TU-Darmstadt, Darmstadt, 2003; http://www.mathematik.tu-darmstadt.de/~burmeister/ConImpIntro.pdf.
 - BLYTH T. T.-VARLET J. J., Ockham Algebras, Oxford Univ. Press, Oxford, 1994. (1994) Zbl0835.06011MR1315526
 - CHAJDA I.-GŁAZEK K., A Basic Course on General Algebra, Zielona Góra Technical University Press, 2000. Zbl0970.08001MR1783394
 - CHEN C. C.-GRÄTZER G., Stone lattices. I: Construction theorems, Canad. J. Math. 21 (1969), 884-894. (1969) Zbl0184.03303MR0242737
 - DAU F., Implications of properties concerning complementation in finite lattices, In: Contributions to General Algebra 12 (D. Dorninger et al., eds.), Proceedings of the 58th workshop on general algebra "58. Arbeitstagung Allgemeine Algebra", Vienna, Austria, June 3-6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 145-154. (1999) MR1777655
 - DILWORTH R. R., Lattices with unique complements, Trans. Amer. Math. Soc. 57 (1945), 123-154. (1945) Zbl0060.06103MR0012263
 - DÜNTSCH, L, A logic for rough sets, Theoret. Comput. Sci. 179 (1997), 427-436. (1997) MR1454599
 - DZIK W., Lattices adequate for intuitionistic predicate logic, In: Mathematical Logic. Proceedings of the Summer School and Conference Dedicated to the Ninetieth Anniversary of Arend Heyting (1898-1980), Held in Chaika, Bulgaria, September 13-23, 1988, Plenum Press, New York, 1990, pp. 293-297. (1980) MR1084001
 - FRINK O., Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514. (1962) Zbl0114.01602MR0140449
 - HINTIKKA J., Quantum logic as a fragment of independence-friendly logic, J. Philos. Logic 31 (2002), 197-209. Zbl1011.03049MR1917265
 - GANTER B.-KWUIDA L., Representable Weak Dicomplementations on Finite Lattices, Contributions to General Algebra 14, Verlag Johannes Heyn, Klagenfurt, 2004. Zbl1043.06010MR2059565
 - GANTER B.-WILLE R., Formal Concept Analysis, Mathematical Foundations, Springer, Berlin, 1999. (1999) Zbl0909.06001MR1707295
 - GLIVENKO V., Sur quelques points de la logique de M. Brouwer, Bulletin Acad. Bruxelles 15 (1929), 183-188. (1929)
 - KALMBACH G., Othomodular Lattices, London Math. Soc. Monogr. 18, Academic Press Inc. (London) Ltd., London, 1983. (1983)
 - KATRIŇÁK T., Über eine Konstruktion der distributiven pseudokomplementätren Verbände, Math. Nachr. 53 (1972). (1972) MR0316334
 - KATRIŇÁK T., The structure of distributive double p-algebras, Regularity and congruences, Algebra Universalis 3 (1992), 238-246. (1992) MR0332598
 - KATRIŇÁK T.-MEDERLY P., Constructions of p-algebras, Algebra Universalis 17 (1983), 288-316. (1983) Zbl0536.06004MR0729938
 - KWUIDA L., Dicomplemented Lattices, A Contextual Generalization of Boolean Algebras, Shaker Verlag, Aachen, 2004. Zbl1129.06006
 - LAKSER H., The structure of pseudocomplemented distributive lattices, I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342. (1971) Zbl0244.06011MR0274358
 - SALIІ V. V., Lattices with Unique Complements, Transl. Math. Monogr. 69, Amer. Math. Soc, Providence, RI, 1988. (1988) MR0931777
 - STONE M. H., The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37-111. (1936) Zbl0014.34002MR1501865
 - URQUHART A., Lattices with a dual homomorphic operation, Studia Logica 38 (1979), 201-209. (1979) Zbl0425.06008MR0544616
 - WILLE R., Restructuring lattice theory: an approach based on hierarchies of concepts, In: Ordered Sets (I. Rival, ed.), D. Reidel Publishing Company, Dordrecht-Boston-London, 1982, pp. 445-470. (1982) Zbl0491.06008MR0661303
 - WILLE R., Boolean concept logic, In: Conceptual Structures: Logical, Linguistic, and Computational Issues. 8th International Conference, ICCS 2000, Darmstadt, Germany, August 14-18, 2000. Proceedings (B. Ganter, G. W. Mineau, eds.), Lecture Notes in Artificial Intelligence 1867, Springer, Heidelberg, 2000, pp. 317-331. Zbl0973.03035
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.