The atoms of a countable sum of set functions
Mathematica Slovaca (1989)
- Volume: 39, Issue: 1, page 81-89
- ISSN: 0139-9918
Access Full Article
topHow to cite
topReferences
top- ARSTEIN Z., Set valued measures, Trans. Amer. Math. Soc. 165, 1972, 103-121. (1972) MR0293054
- BERBERIAN S. K., Measure and Integration, New York 1965. (1965) Zbl0126.08001MR0183839
- CAPEK P., Théorèmes de décomposition en théorie de la mesure I. II, Publications du Séminaire ďAnalyse de Brest, juin 1976. (1976) MR0470169
- CAPEK P., Decomposition theorems in measure theory, Math. Slovaca 31, 1981, No. 1, 53-59. (1981) Zbl0452.28002MR0619507
- CAPEK P., The pathological infìnity of measures, Suppl. ai Rendiconti del Circolo Mat. Di Paleгmo. Série II-6, 1984. (1984) Zbl0596.28001
- FICKER V., On the equivalence of a countable disjoint class of sets of positive measure and a weaker condition than total σ-fìniteness of measures, Bull. Austral. Math. Soc. 1, 1969, 237-243. (1969) MR0257310
- GODET-THOBIE C., Multimesures et multimesures de transitions, Thèse. Montpellier. 1985. (1985)
- HAHN H., ROSENTHAL A., Set Functions, The University of New Mexico Press 1948. (1948) Zbl0033.05301MR0024504
- HIAI F., Radon-Nikodym theorems for set-valued measures, Journal of Miltiv. Analysis 8, 1978, 96-118. (1978) Zbl0384.28006MR0583862
- JOHNSON R. A., Atomic and nonatomic measures, Proc. Amer. Math. Soc., 25, 1970, 650-655. (1970) Zbl0201.06201MR0279266
- SIKORSKI R., Boolean Algebras, Springer-Verlag 1969. (1969) Zbl0191.31505MR0126393
- DREWNOWSKI L., Additive and countably additive correspondences, Commentationes Mathem. XIX 1976. (1976) Zbl0364.28014MR0422564
- CAPEK P., Abstract comparison of the properties of infìnite measures, Acta Math. Univ. Comen. (to appear).