Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term

Ján Andres; Alberto Maria Bersani; Lenka Radová

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2006)

  • Volume: 45, Issue: 1, page 7-29
  • ISSN: 0231-9721

Abstract

top
Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of ε for ε -almost-periods of solutions and their derivatives are also deduced under various restrictions imposed on the constant coefficients of the linear differential operator on the left-hand side of the given equation. Besides the existence, uniqueness and localization of almost-periodic solutions and their derivatives are established.

How to cite

top

Andres, Ján, Bersani, Alberto Maria, and Radová, Lenka. "Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 45.1 (2006): 7-29. <http://eudml.org/doc/32508>.

@article{Andres2006,
abstract = {Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of $\varepsilon $ for $\varepsilon $-almost-periods of solutions and their derivatives are also deduced under various restrictions imposed on the constant coefficients of the linear differential operator on the left-hand side of the given equation. Besides the existence, uniqueness and localization of almost-periodic solutions and their derivatives are established.},
author = {Andres, Ján, Bersani, Alberto Maria, Radová, Lenka},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Almost-periodic solutions; various metrics; higher-order differential equation; nonlinear restoring term; existence and uniqueness criteria; Almost periodic solution; existence and uniqueness},
language = {eng},
number = {1},
pages = {7-29},
publisher = {Palacký University Olomouc},
title = {Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term},
url = {http://eudml.org/doc/32508},
volume = {45},
year = {2006},
}

TY - JOUR
AU - Andres, Ján
AU - Bersani, Alberto Maria
AU - Radová, Lenka
TI - Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2006
PB - Palacký University Olomouc
VL - 45
IS - 1
SP - 7
EP - 29
AB - Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of $\varepsilon $ for $\varepsilon $-almost-periods of solutions and their derivatives are also deduced under various restrictions imposed on the constant coefficients of the linear differential operator on the left-hand side of the given equation. Besides the existence, uniqueness and localization of almost-periodic solutions and their derivatives are established.
LA - eng
KW - Almost-periodic solutions; various metrics; higher-order differential equation; nonlinear restoring term; existence and uniqueness criteria; Almost periodic solution; existence and uniqueness
UR - http://eudml.org/doc/32508
ER -

References

top
  1. Andres J., Existence of two almost periodic solutions of pendulum-type equations, Nonlin. Anal. 37 (1999), 797–804. (1999) Zbl1014.34032MR1692807
  2. Andres J., Almost-periodic and bounded solutions of Carathéodory differential inclusions, Differential Integral Eqns 12, (1999), 887–912. (1999) Zbl1017.34011MR1728035
  3. Andres J., Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions, Lecture Notes in Nonlinear Anal. 2, (J. Andres, L. Górniewicz and P. Nistri, eds.), N. Copernicus Univ., Toruń, 1998, 35–50. (1998) Zbl1096.34508
  4. Andres J., Bersani A. M., Almost-periodicity problem as a fixed-point problem for evolution inclusions, Topol. Meth. Nonlin. Anal. 18 (2001), 337–350. Zbl1013.34063MR1911386
  5. Andres J., Bersani A. M., Grande R. F., Hierarchy of almost-periodic function spaces, Rendiconti Mat. Appl. Ser. VII, 26, 2 (2006), 121–188. Zbl1133.42002MR2275292
  6. Andres J., Bersani A. M., Leśniak K., On some almost-periodicity problems in various metrics, Acta Appl. Math. 65, 1-3 (2001), 35–57. Zbl0997.34032MR1843785
  7. Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems., Kluwer, Dordrecht, 2003. MR1998968
  8. Andres J., Krajc B., Unified approach to bounded, periodic and almost periodic solutions of differential systems, Ann. Math. Sil. 11 (1997), 39–53. (1997) Zbl0899.34029MR1604867
  9. Belley J. M., Fournier G., Saadi Drissi K., Almost periodic weak solutions to forced pendulum type equations without friction, Aequationes Math. 44 (1992), 100–108. (1992) Zbl0763.34035MR1165787
  10. Belley J. M., Fournier G., Saadi Drissi K., Solutions faibles presque périodiques d’équation différentialle du type du pendule forcé, Acad. Roy. Belg. Bull. Cl. Sci. 6, 3 (1992), 173–186. (1992) MR1266017
  11. Belley J. M., Fournier G., Saadi Drissi K., Solutions presque périodiques du systéme différential du type du pendule forcé, Acad. Roy. Belg. Bull. Cl. Sci. 6, 3 (1992), 265–278. (1992) 
  12. Belley J. M., Fournier G., Hayes J., Existence of almost periodic weak type solutions for the conservative forced perdulum equation, J. Diff. Eqns 124, (1996), 205–224. (1996) MR1368066
  13. Danilov L. I., Almost periodic solutions of multivalued maps, Izv. Otdela Mat. Inform. Udmurtsk. Gos. Univ. 1 (1993), Izhevsk, 16–78 (in Russian). (1993) 
  14. Danilov L. I., Measure-valued almost periodic functions and almost periodic selections of multivalued maps, Mat. Sb. 188 (1997), 3–24 (in Russian); Sbornik: Mathematics 188 (1997), 1417–1438. (1997) Zbl0889.42009MR1485446
  15. Danilov L. I., On Weyl almost periodic solutions of multivalued maps, J. Math. Anal. Appl. 316, 1 (2006), 110–127. MR2201752
  16. Deimling K., Hetzer G., Wenxian Shen, Almost periodicity enforced by Coulomb friction, Advances Diff. Eqns 1, 2 (1996), 265–281. (1996) MR1364004
  17. Dzurnak A., Mingarelli A. B., Sturm-Liouville equations with Besicovitch almost periodicity, Proceed. Amer. Math. Soc. 106, 3 (1989), 647–653. (1989) MR0938910
  18. Dolbilov A. M., Shneiberg I. Ya., Almost periodic multifunctions and their selections, Sibirsk. Mat. Zh. 32 (1991), 172–175 (in Russian). (1991) MR1138453
  19. Haraux A., Asymptotic behavior for two-dimensional, quasi-autonomous, almost-periodic evolution equations, J. Diff. Eqns 66 (1987), 62–70. (1987) Zbl0625.34051MR0871571
  20. Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory., Kluwer, Dordrecht, 1997. MR1485775
  21. Kharasakhal V. Kh.: Almost-Periodic Solutions of Ordinary Differential Equations., Nauka, Alma-Ata, 1970 (in Russian). MR0293176
  22. Krasnosel’skii M. A., Burd V. Sh., Kolesov, Yu. S.: Nonlinear Almost Periodic Oscillations., Nauka, Moscow, 1970 (in Russian); English translation: J. Wiley, New York, 1971. (1971) MR0298131
  23. Kunze M.: Non-Smooth Dynamical Systems., Lect. Notes Math., Vol. 1744, Springer, Berlin, 2000. MR1789550
  24. Levitan B. M.: Almost Periodic Functions., GITTL, Moscow, 1953 (in Russian). MR0060629
  25. Levitan B. M., Zhikov V. V.: Almost Periodic Functions, Differential Equations., Cambridge Univ. Press, Cambridge, 1982. MR0690064
  26. Pankov A. A.: Bounded, Almost Periodic Solutions of Nonlinear Operator Differential Equations., Kluwer, Dordrecht, 1990. MR1120781
  27. Radová L., Theorems of Bohr–Neugebauer-type for almost-periodic differential equations, Math. Slovaca 54 (2004), 191–207. Zbl1068.34042MR2074215
  28. Zhikov V. V., Levitan B. M., The Favard theory, Uspekhi Matem. Nauk. 32 (1977), 123–171 (in Russian); Russian Math. Surv. 32 (1977), 129–180. (1977) MR0470405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.