Radicals in non-commutative generalizations of MV-algebras

Jiří Rachůnek

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 2, page 135-144
  • ISSN: 0232-0525

How to cite

top

Rachůnek, Jiří. "Radicals in non-commutative generalizations of MV-algebras." Mathematica Slovaca 52.2 (2002): 135-144. <http://eudml.org/doc/32254>.

@article{Rachůnek2002,
author = {Rachůnek, Jiří},
journal = {Mathematica Slovaca},
keywords = {GMV-algebra; unital -group; ideal; radical},
language = {eng},
number = {2},
pages = {135-144},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Radicals in non-commutative generalizations of MV-algebras},
url = {http://eudml.org/doc/32254},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Rachůnek, Jiří
TI - Radicals in non-commutative generalizations of MV-algebras
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 2
SP - 135
EP - 144
LA - eng
KW - GMV-algebra; unital -group; ideal; radical
UR - http://eudml.org/doc/32254
ER -

References

top
  1. ABRUSCI V. M., RUET P., Non-commutative logic I: the multiplicative fragment, Ann. Pure Appl. Logic 101 (2000), 29-64. Zbl0962.03054MR1729743
  2. ANDERSON M., FEIL T., Lattice-Ordered Groups, D. Reidel Publ., Dordrecht, 1988. (1988) Zbl0636.06008MR0937703
  3. BAUDOT R., Non-commutative logic programming language NoCLog, In: Symposium LICS 2000 (Santa Barbara). Short Presentations. 
  4. BIGARD A., KEIMEL K., WOLFENSTEIN S., Groupes et Anneaux Réticulés, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) Zbl0384.06022MR0552653
  5. CETERCHI R., On algebras with implications, categorically equivalent to pseudo-MV algebras, In: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharest, 1999, pp. 912-917. (1999) Zbl0984.06008MR1730094
  6. CETERCHI R., Pseudo-Wajsberg algebras, Multiple-Valued Logic 6 (2001), 67-88. Zbl1013.03074MR1817437
  7. CETERCHI R., The lattice structure of pseudo-Wajsberg algebras, J. UCS 6 (2000), 22-38. Zbl0963.06012MR1817730
  8. CHANG C. C., Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) MR0094302
  9. CHANG C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
  10. CIGNOLI R. O. L., D'OTTAVIANO I. M. L., MUNDICI D., Algebraic Foundations of Many-Valued Reasoning, Kluwеr Acad. Publ., Dordrecht-Boston-London, 2000. Zbl0937.06009MR1786097
  11. CIGNOLI R., TORRENS A., The poset of prime -ideals of an abelian -group with a strong unit, J. Algebra 184 (1996), 604-614. (1996) MR1409232
  12. DI NOLA A., GEORGESCU G., SESSA S., Closed ideals of MV-algebras, In: Advances in Contemporary Logic and Computer Sciеncе. Contеmp. Math. 235, Amеr. Math. Soc, Providеncе, RI, 1999, pp. 99-112. (1999) Zbl0937.06010MR1721208
  13. DVUREČENSKIJ A., Pseudo M V -algebras are intervals in -groups, J. Austral. Math. Soc 72 (2002) (To appеar). Zbl1027.06014
  14. DVUREČENSKIJ A., States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327. Zbl1081.06010MR1865858
  15. DVUREČENSKIJ A., PULMANNOVÁ S., Nеw Trends in Quantum Structures, Kluwеr Acad. Publ., Dordrеcht-Boston-London, 2000. 
  16. GEORGESCU G., IORGULESCU A., Pseudo-MV algebras: A non-commutative extension of MV-algebras, In: Proc Fourth Intеr. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharеst, 1999, pp. 961-968. (1999) 
  17. GEORGESCU G., IORGULESCU A., Pseudo-MV algebras, Multiplе-Valued Logic 6 (2001), 95-135. Zbl1014.06008MR1817439
  18. GLASS A. M. W., Partially Ordered Groups, World Sciеntific, Singaporе-New Jеrsey-London-Hong Kong, 1999. (1999) Zbl0933.06010MR1791008
  19. GOODEARL K. R., Partially Ordered Abelian Groups with Interpolation, Math. Survеys Monographs 20, Amer. Math. Soc., Providеncе, RI, 1986. (1986) Zbl0589.06008MR0845783
  20. HÁJEK P., Metamathematics of Fuzzy Logic, Kluwеr, Amstеrdam, 1998. (1998) Zbl0937.03030
  21. HORT D., RACHŮNEK J., Lex ideals of generalized MV-algebras, In: Discrete Math. Theoret. Comput. Sci. (DTMCS01), Springer, London, 2001, pp. 125 -136. Zbl0983.06015MR1934826
  22. KOPYTOV V. M., MEDVEDEV N. YA., The Theory of Lattice Ordered Groups, Kluwеr Acad. Publ., Dordrecht-Boston-London, 1994. (1994) Zbl0834.06015MR1369091
  23. LAMBEK J., Some lattice models of bilinear logic, Algebra Universalis 34 (1995), 541-550. (1995) Zbl0840.03044MR1357483
  24. LAMBEK J., Bilinear logic and Grishin algebras, In: Logic at Wгork. Essays Dedicated to the Memory of Helena Rasiowa (E. Orlowska, ed.), Physica-Verlag Comp., Heidelberg, 1999, pp. 604-612. (1999) Zbl0957.03063MR1720819
  25. MAIELI R., RUET P., Non-commutative logic III: focusing proofs, Prеprint. Zbl1072.03035
  26. MUNDICI D., Interpretation of AF C* -algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. (1986) MR0819173
  27. RACHŮNEK J., A non-commutative generalгzation of MV-algebras, Czechoslovak Math. J. (To appear). 
  28. RАCHŮNEK J., Prime ideals and polars in generalized MV-algebras, Multiple-Valued Logic (To appear). 
  29. RАCHŮNEK J., Prime spectra of non-commutative generalгzations of MV-algebras, (Submitted). 
  30. RUET P., Non-commutative logic II: sequent calculus and phrase semantics, Math. Structures Comput. Sci. 10 (2000), 277-312. MR1770234
  31. TURUNEN E., Mathematics Behind Fuzzy Logic, Physica-Verlag, А Springеr-Vеrlag Comp., Hеidelbеrg-New York, 1999. (1999) Zbl0940.03029MR1716958
  32. YETTER D. N., Quantales and (non-commutative) linear logic, J. Symbolic Logic 55 (1990), 41-64. (1990) MR1043543

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.