On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds

Hülya Bağdatlı Yilmaz

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 1, page 111-124
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.

How to cite

top

Yilmaz, Hülya Bağdatlı. "On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 111-124. <http://eudml.org/doc/246443>.

@article{Yilmaz2012,
abstract = {The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.},
author = {Yilmaz, Hülya Bağdatlı},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {almost pseudo conharmonically symmetric manifold; decomposable manifold; scalar curvature; torse-forming vector field; almost pseudo conharmonically symmetric manifold; decomposable manifold; scalar curvature; torse-forming vector field},
language = {eng},
number = {1},
pages = {111-124},
publisher = {Palacký University Olomouc},
title = {On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds},
url = {http://eudml.org/doc/246443},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Yilmaz, Hülya Bağdatlı
TI - On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 111
EP - 124
AB - The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.
LA - eng
KW - almost pseudo conharmonically symmetric manifold; decomposable manifold; scalar curvature; torse-forming vector field; almost pseudo conharmonically symmetric manifold; decomposable manifold; scalar curvature; torse-forming vector field
UR - http://eudml.org/doc/246443
ER -

References

top
  1. Abussattar, D. B., On conharmonic transformations in general relativity, Bulletin of the Calcutta Mathematical Society 41 (1966), 409–416. (1966) 
  2. Adati, T., Miyazawa, T., On Riemannian space with recurrent conformal curvature, Tensor, N.S. 18 (1967), 348–354. (1967) MR0215251
  3. Chaki, M. C., On pseudo symmetric manifolds, Analele Stiint, Univ. AI-I. Cuza 33 (1987), 53–58. (1987) Zbl0634.53012MR0925690
  4. Chaki, M. C., Gupta, B., On conformally symmetric spaces, Indian J. Math. 5 (1963), 113–122. (1963) Zbl0122.39902MR0163255
  5. De, U. C., Biswas, H. A., On pseudo-conformally symmetric manifolds, Bull. Calcutta Math. Soc. 85, 5 (1993), 479–486. (1993) Zbl0821.53018MR1326445
  6. De, U. C., Gazi, A. K., On almost pseudo symmetric manifolds, Ann. Univ. Sci., Budapest. Eötvös, Sect. Math. 51 (2008), 53–68. (2008) Zbl1224.53056MR2567494
  7. De, U. C., Gazi, A. K., On almost pseudo conformally symmetric manifolds, Demonstratio Math. 42, 4 (2009), 861–878. (2009) Zbl1184.53034MR2588986
  8. Deszcz, R., On pseudo symmetric spaces, Bull. Belg. Math. Soc., Serie A 44 (1992), 1–34. (1992) 
  9. Ficken, F. A., 10.2307/1968900, Annals of Math. 40 (1939), 892–913. (1939) Zbl0023.37701MR0000531DOI10.2307/1968900
  10. Ghosh, S., De, U. C., Taleshian, A., Conharmonic curvature tensor on N ( K ) -contact metric manifolds, International Scholarly Research Network, ISRN Geometry, doi: 10.5402/2011/423798. Zbl1226.53029
  11. Ishii, Y., On conharmonic transformations, Tensor, N.S. 7 (1957), 73–80. (1957) Zbl0079.15702MR0102837
  12. Mikeš, J., Projective-symmetric and projective-recurrent affinely connected spaces, Tr. Geom. Semin. 13 (1981), 61–62 (in Russian). (1981) 
  13. Mikeš, J., Geodesic mappings of special Riemannian spaces, Colloq. Math. Soc. Janos Bolyai 46 (1988), 793–813 (1988) MR0933875
  14. Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  15. Rachůnek, L., Mikeš, J., On tensor fields semiconjugated with torse-forming vector fields, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 44 (2005), 151–160. (2005) Zbl1092.53016MR2218574
  16. Schouten, J. A., Ricci Calculus, Spinger, Berlin, 1954. (1954) Zbl0057.37803
  17. Shaikh, A. A., Hui, S. K., On weakly conharmonically symmetric manifolds, Tensor, N.S. 70 (2008), 119–134. (2008) Zbl1193.53115MR2546909
  18. Siddiqui, S. A., Ahsan, Z., Conharmonic curvature tensor and the space-time general relativity, Differential Geometry, Dynamical Systems 12 (2010), 213–220. (2010) MR2606561
  19. Soos, G., 10.1007/BF02020266, Acta Math. Acad. Sci. Hungar. 9 (1958), 359–361. (1958) MR0101529DOI10.1007/BF02020266
  20. Tamássy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, Differential geometry and its applications (Eger, 1989) 56 (1992), 663–670. (1992) Zbl0791.53021MR1211691
  21. Walker, A. G., On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc. 52, 2 (1950), 36–64. (1950) Zbl0039.17702MR0037574
  22. Yano, K., On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340–345. (1944) Zbl0060.39102MR0014777
  23. Yano, K., Kon, M., Structure on Manifolds, World Scientific, Singapore, 1986. (1986) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.