On weakly and pseudo concircular symmetric structures on a Riemannian manifold

Füsun Özen Zengin; Sezgin Altay Demirbag

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2008)

  • Volume: 47, Issue: 1, page 129-138
  • ISSN: 0231-9721

Abstract

top
In this paper, we examine the properties of hypersurfaces of weakly and pseudo concircular symmetric manifolds and we give an example for these manifolds.

How to cite

top

Özen Zengin, Füsun, and Altay Demirbag, Sezgin. "On weakly and pseudo concircular symmetric structures on a Riemannian manifold." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 47.1 (2008): 129-138. <http://eudml.org/doc/32467>.

@article{ÖzenZengin2008,
abstract = {In this paper, we examine the properties of hypersurfaces of weakly and pseudo concircular symmetric manifolds and we give an example for these manifolds.},
author = {Özen Zengin, Füsun, Altay Demirbag, Sezgin},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {weakly symmetric manifold; pseudo symmetric manifold; weakly and pseudo symmetric concircular manifold; totally umbilical; totally geodesic; mean curvature; scalar curvature; weakly symmetric manifold; pseudo symmetric manifold; totally umbilical; totally geodesic; mean curvature; scalar curvature},
language = {eng},
number = {1},
pages = {129-138},
publisher = {Palacký University Olomouc},
title = {On weakly and pseudo concircular symmetric structures on a Riemannian manifold},
url = {http://eudml.org/doc/32467},
volume = {47},
year = {2008},
}

TY - JOUR
AU - Özen Zengin, Füsun
AU - Altay Demirbag, Sezgin
TI - On weakly and pseudo concircular symmetric structures on a Riemannian manifold
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2008
PB - Palacký University Olomouc
VL - 47
IS - 1
SP - 129
EP - 138
AB - In this paper, we examine the properties of hypersurfaces of weakly and pseudo concircular symmetric manifolds and we give an example for these manifolds.
LA - eng
KW - weakly symmetric manifold; pseudo symmetric manifold; weakly and pseudo symmetric concircular manifold; totally umbilical; totally geodesic; mean curvature; scalar curvature; weakly symmetric manifold; pseudo symmetric manifold; totally umbilical; totally geodesic; mean curvature; scalar curvature
UR - http://eudml.org/doc/32467
ER -

References

top
  1. Tamassy L., Binh T. Q., On weakly symmetric and weakly pseudo projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 50 (1989), 663–670. (1989) MR1211691
  2. Chaki M. C., Mondal S. P., On generalised pseudo symmetric manifolds, Publ. Math. Debrecen 51, 1-2 (1997), 35–42. (1997) 
  3. De U. C., Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), 377–381. (1999) Zbl0922.53018MR1694492
  4. Ozen F., Altay S., On weakly concircular symmetric spaces, Math. Pannonica 16, 1 (2005), 29–38. MR2134236
  5. Desa P., Amur K., On w-recurrent spaces, Tensor 29 (1975), 98–102. (1975) MR0375119
  6. Chen B. Y.: Geometry of Submanifolds., Marcel-Deker, New York, , 1973. (1973) MR0353212
  7. Eisenhart L. P.: Riemannian Geometry., Princeton University Press, , 1949. (1949) MR0035081
  8. Roter W., On conformally symmetric Ricci-recurrent space, Coll. Math. 31 (1974), 87–96. (1974) MR0372768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.