On Almost Pseudo-Z-symmetric Manifolds

Uday Chand De; Prajjwal Pal

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2014)

  • Volume: 53, Issue: 1, page 25-43
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat A ( P Z S ) n ( n > 3 ) is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained in Section 5.

How to cite

top

De, Uday Chand, and Pal, Prajjwal. "On Almost Pseudo-Z-symmetric Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53.1 (2014): 25-43. <http://eudml.org/doc/261968>.

@article{De2014,
abstract = {The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat $A(PZS)_\{n\}$ ($n>3$) is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained in Section 5.},
author = {De, Uday Chand, Pal, Prajjwal},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {pseudo symmetric manifolds; pseudo Ricci symmetric manifolds; almost pseudo Ricci symmetric manifolds; almost pseudo-Z-symmetric manifolds; conformally flat almost pseudo-Z-symmetric manifolds; pseudo symmetric manifolds; pseudo Ricci symmetric manifolds; almost pseudo Ricci symmetric manifolds; almost pseudo-Z-symmetric manifolds; conformally flat almost pseudo-Z-symmetric manifolds},
language = {eng},
number = {1},
pages = {25-43},
publisher = {Palacký University Olomouc},
title = {On Almost Pseudo-Z-symmetric Manifolds},
url = {http://eudml.org/doc/261968},
volume = {53},
year = {2014},
}

TY - JOUR
AU - De, Uday Chand
AU - Pal, Prajjwal
TI - On Almost Pseudo-Z-symmetric Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2014
PB - Palacký University Olomouc
VL - 53
IS - 1
SP - 25
EP - 43
AB - The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat $A(PZS)_{n}$ ($n>3$) is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained in Section 5.
LA - eng
KW - pseudo symmetric manifolds; pseudo Ricci symmetric manifolds; almost pseudo Ricci symmetric manifolds; almost pseudo-Z-symmetric manifolds; conformally flat almost pseudo-Z-symmetric manifolds; pseudo symmetric manifolds; pseudo Ricci symmetric manifolds; almost pseudo Ricci symmetric manifolds; almost pseudo-Z-symmetric manifolds; conformally flat almost pseudo-Z-symmetric manifolds
UR - http://eudml.org/doc/261968
ER -

References

top
  1. Adati, T., Miyazawa, T., On a Riemannian space with recurrent conformal curvature, Tensor, N. S. 18 (1967), 348–354. (1967) Zbl0152.39103MR0215251
  2. Binh, T. Q., On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 42 (1993), 103–107. (1993) Zbl0797.53041MR1208855
  3. Cartan, E., Sur une classes remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54 (1926), 214–264. (1926) MR1504900
  4. Chaki, M. C., Gupta, B., On conformally symmetric spaces, Indian J. Math. 5 (1963), 113–295. (1963) Zbl0122.39902MR0163255
  5. Chaki, M. C., On pseudo symmetric manifolds, Ann. St. Univ. “Al I Cuza" Iasi 33 (1987), 53–58. (1987) Zbl0634.53012MR0925690
  6. Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15 (1988), 525–531. (1988) Zbl0689.53011MR1028590
  7. Chaki, M. C., Kawaguchi, T., On almost pseudo Ricci symmetric manifolds, Tensor, N. S. 68 (2007), 10–14. (2007) Zbl1193.53099MR2363663
  8. Chen, B. Y., Yano, K., Hypersurfaces of a conformally flat spaces, Tensor, N. S. 26 (1972), 318–322. (1972) MR0331283
  9. Chern, S. S., 10.1007/BF02960745, Abh. Math. Sem. Univ. Hamburg 20 (1956), 117–126. (1956) MR0075647DOI10.1007/BF02960745
  10. De, U. C., On weakly symmetric structures on Riemannian manifolds, Facta Univ. Ser. Mech. Automat. Control Robot. 3 (2003), 805–819. (2003) MR2021830
  11. De, U. C., Bandyopadhyay, S., On weakly symmetric spaces, Publ. Math. Debrecen 54 (1999), 377–381. (1999) MR1694492
  12. De, U. C., Bandyopadhyay, S., On weakly symmetric spaces, Acta Math. Hungarica 83 (2000), 205–212. (2000) Zbl0958.53038MR1761275
  13. De, U. C., Gazi, A. K., On almost pseudo symmetric manifolds, Annales Univ. Sci. Budapest. 51 (2008), 53–68. (2008) Zbl1224.53056MR2567494
  14. De, U. C., Gazi, A. K., On almost pseudo conformally symmetric manifolds, Demonstratio Mathematica 4 (2009), 869–886. (2009) Zbl1184.53034MR2588986
  15. De, U. C., Gazi, A. K., 10.5666/KMJ.2009.49.3.507, Kyungpook Math. J. 49 (2009), 507–520. (2009) MR2601863DOI10.5666/KMJ.2009.49.3.507
  16. De, U. C., Gazi, A. K., On pseudo Ricci symmetric manifold, Analele Stiintifice Ale Universitatii “Al. I. Cuza" Din IASI (S. N.), Matematica 58 (2012), 209–222. (2012) MR3012127
  17. De, U. C., Sengupta, J., On a weakly symmetric Riemannian manifold admitting a special type of semi-symmetric metric connection, Novi Sad. J. Math. 29 (1999), 89–95. (1999) Zbl1011.53024MR1770988
  18. De, A., Őzgűr, C., De, U. C., 10.1007/s10773-012-1164-0, Int. J. Theor. Phys. 51 (2012), 2878–2887. (2012) MR2955551DOI10.1007/s10773-012-1164-0
  19. Eisenhart, L. P., Riemannian Geometry, Princeton University Press, Princeton, 1949. (1949) Zbl0041.29403MR0035081
  20. Gray, A., 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259–280. (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
  21. Hinterleitner, I., Mikeš, J., Geodesic mappings onto Weyl manifolds, In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009) 8 (2009), 423–430. (2009) 
  22. Hui, S. K., On weakly W 3 -symmetric manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50 (2011), 53–71. (2011) Zbl1252.53020MR2920699
  23. Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963. (1963) MR0152974
  24. Mantica, C. A., Molinari, L. G., 10.1007/s10474-011-0166-3, Acta Math. Hungarica 135 (2012), 80–96. (2012) Zbl1289.53040MR2898791DOI10.1007/s10474-011-0166-3
  25. Mantica, C. A., Suh, Y. J., 10.1142/S0219887812500041, Int. J. Geom. Meth. Mod. Phys. 9 (2012), 1250004 1–21. (2012) Zbl1244.53019MR2891518DOI10.1142/S0219887812500041
  26. Mantica, C. A., Suh, Y. J., 10.1142/S0219887812500594, Int. J. Geom. Meth. Mod. Phys. 9 (2012), 1250059 1–26. (2012) Zbl1255.53024MR2972516DOI10.1142/S0219887812500594
  27. Mikeš, J., On geodesic mappings of Ricci-2-symmetric Riemannian spaces, Mat. Zametki 28 (1980), 313–317, Transl.: Math. Notes 28 (1980), 922–924. (1980) MR0587405
  28. Mikeš, J., Geodesic mappings of affine-connected and Riemannian spaces. Geometry, 2, J. Math. Sci. 78 (1996), 311–333. (1996) MR1384327
  29. Mikeš, J., Hinterleitner, I., :, Vanžurová, A., Geodesic mappings and some generalizations, Palacký University, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  30. Mikeš, J., Chudá, H., On geodesic mappings with certain initial conditions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26 (2010), 337–341. (2010) Zbl1240.53029MR2754425
  31. O’Neill, B., Semi-Riemannian Geometry with Applications to the Relativity, Academic Press, New York–London, 1983. (1983) MR0719023
  32. Ozen, F., Altay, S., Weakly and pseudo-symmetric Riemannian spaces, Indian J. Pure appl. Math. 33 (2002), 1477–1488. (2002) Zbl1028.53056MR1941070
  33. Ozen, F., Altay, S., On weakly and pseudo-concircular symmetric structures on a Riemannian manifold, Acta Univ. Palack. Olomuc., Fac. rer. nat., Math. 47 (2008), 129–138. (2008) Zbl1184.53022MR2482723
  34. Prvanović, M., On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 46 (1995), 19–25. (1995) Zbl0860.53010MR1316645
  35. Schouten, J. A., Ricci-Calculus, An Introduction to Tensor Analysis and its Geometrical Applications, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954. (1954) Zbl0057.37803MR0066025
  36. Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979, (in Russian). (1979) Zbl0637.53020MR0552022
  37. Sen, R. N., Chaki, M. C., On curvature restrictions of a certain kind of conformally flat Riemannian space of class one, Proc. Nat. Inst. Sci. India 33, (part I) (1967), 100–102. (1967) Zbl0163.43401MR0232308
  38. Takeno, H., Ikeda, M., Theory of spherically symmetric space-times. VII. Space-times with corresponding geodesics, J. Sci. Hiroshima Univ. A 17, 1 (1953), 75–81. (1953) MR0059664
  39. Tamássy, L., Binh, T. Q., On weakly symmetric and weakly projectively symmetric Riemannian manifolds, Colloq. Math. Soc. Janos Bolyai 56 (1989), 663–670. (1989) MR1211691
  40. Tamássy, L., Binh, T. Q., On weak symmetries of Einstein and Sasakian manifolds, Tensor, N. S. 53 (1993), 140–148. (1993) MR1455411
  41. Walker, A. G., On Ruse’s space of recurrent curvature, Proc. London Math. Soc. 52 (1950), 36–54. (1950) 
  42. Yano, K., Kon, M., Structures on manifolds, World Scientific, Singapore, 1984, 418–421. (1984) Zbl0557.53001MR0794310
  43. Yilmaz, H. B., On decomposable almost pseudo conharmonically symmetric manifolds, Acta Univ. Palacki. Olomuc. Fac. rer. nat., Math. 51 (2012), 111–124. (2012) Zbl1273.53010MR3060013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.