On Weakly W 3 -Symmetric Manifolds

Shyamal Kumar Hui

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)

  • Volume: 50, Issue: 1, page 53-71
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study weakly W 3 -symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly W 3 -symmetric manifold both the decompositions are weakly Ricci symmetric.

How to cite

top

Hui, Shyamal Kumar. "On Weakly $W_3$-Symmetric Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 53-71. <http://eudml.org/doc/196684>.

@article{Hui2011,
abstract = {The object of the present paper is to study weakly $W_3$-symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly $W_3$-symmetric manifold both the decompositions are weakly Ricci symmetric.},
author = {Hui, Shyamal Kumar},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {weakly $W_3$-symmetric manifold; $W_3$-curvature tensor; decomposable manifold; scalar curvature; totally umbilical hypersurfaces; totally geodesic; mean curvature; weakly -symmetric manifold; -curvature tensor; decomposable manifold; scalar curvature; totally umbilical hypersurfaces; totally geodesic; mean curvature},
language = {eng},
number = {1},
pages = {53-71},
publisher = {Palacký University Olomouc},
title = {On Weakly $W_3$-Symmetric Manifolds},
url = {http://eudml.org/doc/196684},
volume = {50},
year = {2011},
}

TY - JOUR
AU - Hui, Shyamal Kumar
TI - On Weakly $W_3$-Symmetric Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 53
EP - 71
AB - The object of the present paper is to study weakly $W_3$-symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly $W_3$-symmetric manifold both the decompositions are weakly Ricci symmetric.
LA - eng
KW - weakly $W_3$-symmetric manifold; $W_3$-curvature tensor; decomposable manifold; scalar curvature; totally umbilical hypersurfaces; totally geodesic; mean curvature; weakly -symmetric manifold; -curvature tensor; decomposable manifold; scalar curvature; totally umbilical hypersurfaces; totally geodesic; mean curvature
UR - http://eudml.org/doc/196684
ER -

References

top
  1. Altay, S., Some applications on weakly pseudosymmetric Riemannian manifolds, Diff. Geom. Dyn. Syst. 7 (2005), 1–10. (2005) MR2141667
  2. Binh, T. Q., On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 42 (1993), 103–107. (1993) Zbl0797.53041MR1208855
  3. Cartan, E., Sur une classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54 (1926), 214–264. (1926) MR1504900
  4. Chaki, M. C., On pseudo-symmetric manifolds, An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. (1987) Zbl0634.53012MR0925690
  5. Chaki, M. C., On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen 45 (1994), 305–312. (1994) 
  6. Chen, B. Y., Geometry of submanifolds, Marcel-Deker, New York, 1973. (1973) Zbl0262.53036MR0353212
  7. De, U. C., Bandyopadhyay, S., On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), 377–381. (1999) Zbl0922.53018MR1694492
  8. Deszcz R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A 44, 1 (1992), 1–34. (1992) Zbl0808.53012MR1315367
  9. Eisenhart, L. P., Riemannian Geometry, Princeton University Press, Princeton, 1949. (1949) Zbl0041.29403MR0035081
  10. Hui, S. K., Matsuyama, Y., Shaikh, A. A., On decomposable weakly conformally symmetric manifolds, Acta Math. Hungar. 128, 1-2 (2010), 82–95. (2010) Zbl1224.53057MR2665800
  11. Mikeš, J., Projective-symmetric and projective-recurrent affinely connected spaces, Tr. Geom. Semin. 13 (1981), 61–62 (in Russian). (1981) 
  12. Mikeš, J., Geodesic mappings of special Riemannian spaces, In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. (1988) MR0933875
  13. Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  14. Mikeš, J., Tolobaev, O. S., Symmetric and projectively symmetric affinely connected spaces, Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). (1988) MR1165335
  15. Özen, F., Altay, S., On weakly and pseudo symmetric Riemannian spaces, Indian J. Pure Appl. Math. 33, 10 (2001), 1477–1488. (2001) MR1941070
  16. Özen, F., Altay, S., On weakly and pseudo concircular symmetric structures on a Riemannian manifold, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 47 (2008), 129–138. (2008) Zbl1184.53022MR2482723
  17. Pokhariyal, G. P., Curvature tensors and their relativistic significance III, Yokohama Math. J. 21 (1973), 115–119. (1973) Zbl0291.53011MR0465066
  18. Prvanović, M., On weakly symmetric Riemmanian manifolds, Publ. Math. Debrecen 46 (1995), 19–25. (1995) 
  19. Roter, W., On conformally symmetric Ricci recurrent space, Colloq. Math. 31 (1974), 87–96. (1974) MR0372768
  20. Schouten, J. A., Ricci-Calculus, An introduction to Tensor Analysis and its Geometrical Applications, Springer-Verlag, Berlin, 1954. (1954) Zbl0057.37803MR0066025
  21. Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47–87. (1956) Zbl0072.08201MR0088511
  22. Shaikh, A. A., Baishya, K. K., On weakly quasi-conformally symmetric manifolds, Soochow J. Math. 31, 4 (2005), 581–595. (2005) Zbl1091.53017MR2190202
  23. Shaikh, A. A., Hui, S. K., On weakly conharmonically symmetric manifolds, Tensor, N. S. 70 (2008), 119–134. (2008) Zbl1193.53115MR2546909
  24. Shaikh, A. A., Hui, S. K., On weakly concircular symmetric manifolds, Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. (2009) Zbl1199.53057MR2510720
  25. Shaikh, A. A., Hui, S. K., On weakly projective symmetric manifolds, Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. (2009) Zbl1224.53039MR2570946
  26. Shaikh, A. A., Hui, S. K., 10.1134/S1995080208040021, Lobachevski J. Math. 29, 4 (2008), 206–215. (2008) Zbl1167.53305MR2461622DOI10.1134/S1995080208040021
  27. Shaikh, A. A., Jana, S. K., On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen. 71 (2007), 27–41. (2007) Zbl1136.53019MR2340032
  28. Shaikh, A. A., Jana, S. K., On weakly quasi-conformally symmetric manifolds, SUT. J. Math. 43, 1 (2007), 61–83. (2007) Zbl1139.53008MR2417157
  29. Shaikh, A. A., Jana, S. K, Eyasmin, S., On weakly pseudo quasi-conformally symmetric manifolds, Indian J. Math. 50, 3 (2008), 505–518. (2008) Zbl1167.53023MR2483698
  30. Shaikh, A. A., Roy, I., Hui, S. K., On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces, Global J. Science Frontier Research 10, 4 (2010), 28–30. (2010) 
  31. Shaikh, A. A., Shahid, M. H., Hui, S. K., On weakly conformally symmetric manifolds, Matematiki Vesnik 60 (2008), 269–284. (2008) Zbl1224.53033MR2465809
  32. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, Nauka, Moscow, 1979, (in Russian). (1979) Zbl0637.53020MR0552022
  33. Szabó, Z. I., Structure theorems on Riemannian spaces satisfying R ( X , Y ) · R = 0 , The local version, J. Diff. Geom. 17 (1982), 531–582. (1982) MR0683165
  34. Tamássy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. (1989) MR1211691
  35. Tamássy, L., Binh, T. Q., On weak symmetrics of Einstein and Sasakian manifolds, Tensor, N. S. 53 (1993), 140–148. (1993) MR1455411
  36. Walker, A. G., On Ruses spaces of recurrent curvature, Proc. London Math. Soc. 52 (1950), 36–64. (1950) MR0037574
  37. Yano, K., Kon, M., Structure on manifolds, World Scientific Publ., Singapore, 1984. (1984) MR0794310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.