Addition theorems, -spaces and dually discrete spaces
Ofelia Teresa Alas; Vladimir Vladimirovich Tkachuk; Richard Gordon Wilson
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 1, page 113-124
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlas, Ofelia Teresa, Tkachuk, Vladimir Vladimirovich, and Wilson, Richard Gordon. "Addition theorems, $D$-spaces and dually discrete spaces." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 113-124. <http://eudml.org/doc/32485>.
@article{Alas2009,
abstract = {A neighbourhood assignment in a space $X$ is a family $\mathcal \{O\}= \lbrace O_x:x\in X\rbrace $ of open subsets of $X$ such that $x\in O_x$ for any $x\in X$. A set $Y\subseteq X$ is a kernel of $\mathcal \{O\}$ if $\mathcal \{O\}(Y)=\bigcup \lbrace O_x:x\in Y\rbrace =X$. If every neighbourhood assignment in $X$ has a closed and discrete (respectively, discrete) kernel, then $X$ is said to be a $D$-space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf $P$-space is a $D$-space and we prove an addition theorem for metalindelöf spaces which answers a question of Arhangel’skii and Buzyakova.},
author = {Alas, Ofelia Teresa, Tkachuk, Vladimir Vladimirovich, Wilson, Richard Gordon},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {neighbourhood assignment; $D$-space; dually discrete space; discrete kernel; scattered space; paracompactness; GO-space; neighborhood assignment; -space; dually discrete space; scattered space; -space},
language = {eng},
number = {1},
pages = {113-124},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Addition theorems, $D$-spaces and dually discrete spaces},
url = {http://eudml.org/doc/32485},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Alas, Ofelia Teresa
AU - Tkachuk, Vladimir Vladimirovich
AU - Wilson, Richard Gordon
TI - Addition theorems, $D$-spaces and dually discrete spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 113
EP - 124
AB - A neighbourhood assignment in a space $X$ is a family $\mathcal {O}= \lbrace O_x:x\in X\rbrace $ of open subsets of $X$ such that $x\in O_x$ for any $x\in X$. A set $Y\subseteq X$ is a kernel of $\mathcal {O}$ if $\mathcal {O}(Y)=\bigcup \lbrace O_x:x\in Y\rbrace =X$. If every neighbourhood assignment in $X$ has a closed and discrete (respectively, discrete) kernel, then $X$ is said to be a $D$-space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf $P$-space is a $D$-space and we prove an addition theorem for metalindelöf spaces which answers a question of Arhangel’skii and Buzyakova.
LA - eng
KW - neighbourhood assignment; $D$-space; dually discrete space; discrete kernel; scattered space; paracompactness; GO-space; neighborhood assignment; -space; dually discrete space; scattered space; -space
UR - http://eudml.org/doc/32485
ER -
References
top- Alas O.T., Junqueira L., Wilson R.G., 10.1016/j.topol.2008.04.003, Topology Appl. 155 (2008), 13 1420--1425. (2008) Zbl1169.54010MR2427413DOI10.1016/j.topol.2008.04.003
- Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G., Irresolvable and submaximal spaces: homogeneity versus -discreteness and new ZFC examples, Topology Appl. 107 (2000), 259--273. (2000) Zbl0984.54002MR1779814
- Alas O.T., Tkachuk V.V., Wilson R.G., Covering properties and neighbourhood assignments, Topology Proc. 30 1 (2006), 25--38. (2006) MR2280656
- Arhangel'skii A.V., 10.1090/S0002-9939-04-07336-8, Proc. Amer. Math. Soc. 132 7 (2004), 2163--2170. (2004) Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
- Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and -spaces, Comment. Math. Univ. Carolin. 43 (2002), 653--663. (2002) Zbl1090.54017MR2045787
- Arhangel'skii A.V., Collins P.J., 10.1016/0166-8641(94)00093-I, Topology Appl. 64 3 (1995), 219--241. (1995) MR1342519DOI10.1016/0166-8641(94)00093-I
- Buzyakova R.Z., Tkachuk V.V., Wilson R.G., A quest for nice kernels of neighbourhood assignments, Comment. Math. Univ. Carolin. 48 4 (2007), 689--697. (2007) Zbl1199.54141MR2375169
- van Douwen E.K., Lutzer D., 10.1090/S0002-9939-97-03902-6, Proc. Amer. Math. Soc. 125 4 (1997), 1237--1245. (1997) Zbl0885.54023MR1396999DOI10.1090/S0002-9939-97-03902-6
- van Douwen E., Pfeffer W.F., 10.2140/pjm.1979.81.371, Pacific J. Math. 81 2 (1979), 371--377. (1979) MR0547605DOI10.2140/pjm.1979.81.371
- van Douwen E., Wicke H.H., A real, weird topology on the reals, Houston J. Math. 3 1 (1977), 141--152. (1977) Zbl0345.54036MR0433414
- Eisworth T., On -spaces, in Open Problems in Topology, II, ed. Elliott Pearl, Elsevier, Amsterdam, 2007. MR2367385
- Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Galvin F., Indeterminacy of point-open games, Bull. Acad. Polon. Sci., Sér. Math. 26 5 (1978), 445--449. (1978) Zbl0392.90101MR0493925
- Gruenhage G., A note on -spaces, Topology Appl. 153 (2006), 2229--2240. (2006) Zbl1101.54029MR2238727
- Lutzer D., Ordinals and paracompactness in ordered spaces, Proceedings Topo72, General Topology and its Applications, Pittsburgh International Conference, 1972, Lecture Notes in Mathematics 372, Springer, Berlin, 1974. Zbl0298.54015MR0362250
- van Mill J., Tkachuk V.V., Wilson R.G., 10.1016/j.topol.2006.03.029, Topology Appl. 154 (2007), 2127--2134. (2007) Zbl1131.54022MR2324924DOI10.1016/j.topol.2006.03.029
- Telgársky R., Spaces defined by topological games, Fund. Math. 88 (1975), 193--223. (1975) MR0380708
- Telgársky R., Spaces defined by topological games II, Fund. Math. 116 (1983), 189--207. (1983) MR0716219
- Uspenskij V.V., The frequency spectrum of function spaces (in Russian), Vestnik. Moskov. Univ. Ser. I Mat. 37 1 (1982), 31--35. (1982)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.