Abstract tangent functors

J. Rosický

Diagrammes (1984)

  • Volume: 12, page JR1-JR11
  • ISSN: 0224-3911

How to cite

top

Rosický, J.. "Abstract tangent functors." Diagrammes 12 (1984): JR1-JR11. <http://eudml.org/doc/91746>.

@article{Rosický1984,
author = {Rosický, J.},
journal = {Diagrammes},
keywords = {ring of line type; tangent functor; tangent bundle; synthetic differential geometry},
language = {eng},
pages = {JR1-JR11},
publisher = {Université Paris 7, Unité d'enseignement et de recherche de mathématiques},
title = {Abstract tangent functors},
url = {http://eudml.org/doc/91746},
volume = {12},
year = {1984},
}

TY - JOUR
AU - Rosický, J.
TI - Abstract tangent functors
JO - Diagrammes
PY - 1984
PB - Université Paris 7, Unité d'enseignement et de recherche de mathématiques
VL - 12
SP - JR1
EP - JR11
LA - eng
KW - ring of line type; tangent functor; tangent bundle; synthetic differential geometry
UR - http://eudml.org/doc/91746
ER -

References

top
  1. [1] G. M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 ( 1980), 1-83. Zbl0437.18004MR589937
  2. [2] A. Kock, Synthetic Differential Geometry, Cambridge Univ. Press 1981. Zbl0466.51008MR649622
  3. [3] I. Kolář, On the second tangent bundle and generalized Lie derivatives, Tensor 38 ( 1982), 98-102. Zbl0512.58002MR832633
  4. [4] I. Kolář, Natural transformations of the second tangent functor into itself, to appear in Arch. Math. (Brno) 4 ( 1984). Zbl0578.58004MR784868
  5. [5] R. Lavendhomme, Note sur l'algèbre de Lie d'un groupe de Lie en géométrie différentielle synthetique, Univ. Cath. de Louvain, Sém. de math, pure, Rapport no. 111 ( 1981). 
  6. [6] G. E. Reyes and G. C. Wraith, A note on tangent bundles in a category with a ring object, Math. Scand. 42 ( 1978), 53-63. Zbl0392.18011MR500146
  7. [7] A. Van_urová, On geometry of the third tangent bundle, to appear in Acta Univ. Olom. 82 ( 1985). Zbl0619.53013MR879025
  8. [8] J. E. White, The method of iterated tangents with application in local Riemannian geometry, Pitman 1982. Zbl0478.58002MR693620

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.