A matrix constructive method for the analytic-numerical solution of coupled partial differential systems

Lucas Jódar; Enrique A. Navarro; M. V. Ferrer

Applications of Mathematics (1995)

  • Volume: 40, Issue: 5, page 391-400
  • ISSN: 0862-7940

Abstract

top
In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation u t - A u x x - B u = 0 , where B is an arbitrary square complex matrix and A ia s matrix such that the real part of the eigenvalues of the matrix 1 2 ( A + A H ) is positive. Given an admissible error ε and a finite domain G , and analytic-numerical solution whose error is uniformly upper bounded by ε in G , is constructed.

How to cite

top

Jódar, Lucas, Navarro, Enrique A., and Ferrer, M. V.. "A matrix constructive method for the analytic-numerical solution of coupled partial differential systems." Applications of Mathematics 40.5 (1995): 391-400. <http://eudml.org/doc/32927>.

@article{Jódar1995,
abstract = {In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation $u_t-Au_\{xx\}-Bu=0$, where $B$ is an arbitrary square complex matrix and $A$ ia s matrix such that the real part of the eigenvalues of the matrix $\frac\{1\}\{2\}(A+A^H)$ is positive. Given an admissible error $\varepsilon $ and a finite domain $G$, and analytic-numerical solution whose error is uniformly upper bounded by $\varepsilon $ in $G$, is constructed.},
author = {Jódar, Lucas, Navarro, Enrique A., Ferrer, M. V.},
journal = {Applications of Mathematics},
keywords = {Schur decomposition; partial differential system; eigenvalues bound; matrix norms; analytic-numerical solution; error bounds; matrix constructive method; series expansion; analytic-numerical methods; systems; separation of variables},
language = {eng},
number = {5},
pages = {391-400},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A matrix constructive method for the analytic-numerical solution of coupled partial differential systems},
url = {http://eudml.org/doc/32927},
volume = {40},
year = {1995},
}

TY - JOUR
AU - Jódar, Lucas
AU - Navarro, Enrique A.
AU - Ferrer, M. V.
TI - A matrix constructive method for the analytic-numerical solution of coupled partial differential systems
JO - Applications of Mathematics
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 5
SP - 391
EP - 400
AB - In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation $u_t-Au_{xx}-Bu=0$, where $B$ is an arbitrary square complex matrix and $A$ ia s matrix such that the real part of the eigenvalues of the matrix $\frac{1}{2}(A+A^H)$ is positive. Given an admissible error $\varepsilon $ and a finite domain $G$, and analytic-numerical solution whose error is uniformly upper bounded by $\varepsilon $ in $G$, is constructed.
LA - eng
KW - Schur decomposition; partial differential system; eigenvalues bound; matrix norms; analytic-numerical solution; error bounds; matrix constructive method; series expansion; analytic-numerical methods; systems; separation of variables
UR - http://eudml.org/doc/32927
ER -

References

top
  1. Mathematical Analysis, Addison-Wesley, Reading M.A., 1977. (1977) 
  2. 10.1007/BF01386023, Numerische Math. 3 (1961), 241–246. (1961) MR0130105DOI10.1007/BF01386023
  3. Magnetohydrodynamic flow in electrodynamically coupled rectangular ducts I, Magn. Girodinam 2 (1976), 35–40. (1976) 
  4. 10.1137/0124061, SIAM J. Appl. Math. 24 (1973), 596–602. (1973) MR0370318DOI10.1137/0124061
  5. 10.1090/qam/244596, Quart. Appl. Maths. XXVII (1969), 87–104. (1969) MR0244596DOI10.1090/qam/244596
  6. Fourier Series and Boundary Value Problems, McGraw-Hill, New York, 1978. (1978) MR0513825
  7. Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962. (1962) MR0065391
  8. Matrix Computations, Johns Hopkins Univ. Press, Baltimore M.A., 1985. (1985) 
  9. 10.1016/0025-5564(77)90092-X, Math. Biosci. 37 (1977), 191–203. (1977) Zbl0368.90101MR0682615DOI10.1016/0025-5564(77)90092-X
  10. 10.1090/qam/950607, Quart. Appl. Maths. 46 (1988), no. 2, 353–364. (1988) MR0950607DOI10.1090/qam/950607
  11. 10.1080/00207169008803948, Int. J. Computer Math. 37 (1990), 201–212. (1990) DOI10.1080/00207169008803948
  12. 10.1080/00207169208804139, Int. J. Computer Math. 46 (1992), 63–75. (1992) DOI10.1080/00207169208804139
  13. 10.1016/0022-247X(82)90116-0, J. Math. Anal. Appl. 89 (1982), 530–557. (1982) MR0677744DOI10.1016/0022-247X(82)90116-0
  14. 10.1002/cpa.3160420206, Com. Pure Appl. Math. XLII (1989), 213–227. (1989) Zbl0664.92007MR0978705DOI10.1002/cpa.3160420206
  15. 10.1137/0727054, SIAM J. Numer. Anal. 27 (1990), no. 4, 941–962. (1990) MR1051115DOI10.1137/0727054
  16. 10.1016/0165-0270(91)90143-N, J. Neurosc. Methods 36 (1991), 105–114. (1991) DOI10.1016/0165-0270(91)90143-N
  17. 10.1137/1020098, SIAM Review 20 (1978), 801–836. (1978) MR0508383DOI10.1137/1020098
  18. 10.1002/fld.1650060903, Int. J. Numer. Methods Fluids 6 (1986), 593–609. (1986) Zbl0597.76116DOI10.1002/fld.1650060903
  19. Introduction to Numerical Analysis, Springer-Verlag, New York, 1980. (1980) MR0557543
  20. 10.1137/0124008, SIAM J. Appl. Math. 24 (1975), 62–80. (1975) MR0318657DOI10.1137/0124008
  21. Introduction to Partial Differential Equations with Applications, William and Wilkins, Baltimore, 1976. (1976) MR0463623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.