A matrix constructive method for the analytic-numerical solution of coupled partial differential systems
Lucas Jódar; Enrique A. Navarro; M. V. Ferrer
Applications of Mathematics (1995)
- Volume: 40, Issue: 5, page 391-400
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJódar, Lucas, Navarro, Enrique A., and Ferrer, M. V.. "A matrix constructive method for the analytic-numerical solution of coupled partial differential systems." Applications of Mathematics 40.5 (1995): 391-400. <http://eudml.org/doc/32927>.
@article{Jódar1995,
abstract = {In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation $u_t-Au_\{xx\}-Bu=0$, where $B$ is an arbitrary square complex matrix and $A$ ia s matrix such that the real part of the eigenvalues of the matrix $\frac\{1\}\{2\}(A+A^H)$ is positive. Given an admissible error $\varepsilon $ and a finite domain $G$, and analytic-numerical solution whose error is uniformly upper bounded by $\varepsilon $ in $G$, is constructed.},
author = {Jódar, Lucas, Navarro, Enrique A., Ferrer, M. V.},
journal = {Applications of Mathematics},
keywords = {Schur decomposition; partial differential system; eigenvalues bound; matrix norms; analytic-numerical solution; error bounds; matrix constructive method; series expansion; analytic-numerical methods; systems; separation of variables},
language = {eng},
number = {5},
pages = {391-400},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A matrix constructive method for the analytic-numerical solution of coupled partial differential systems},
url = {http://eudml.org/doc/32927},
volume = {40},
year = {1995},
}
TY - JOUR
AU - Jódar, Lucas
AU - Navarro, Enrique A.
AU - Ferrer, M. V.
TI - A matrix constructive method for the analytic-numerical solution of coupled partial differential systems
JO - Applications of Mathematics
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 5
SP - 391
EP - 400
AB - In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation $u_t-Au_{xx}-Bu=0$, where $B$ is an arbitrary square complex matrix and $A$ ia s matrix such that the real part of the eigenvalues of the matrix $\frac{1}{2}(A+A^H)$ is positive. Given an admissible error $\varepsilon $ and a finite domain $G$, and analytic-numerical solution whose error is uniformly upper bounded by $\varepsilon $ in $G$, is constructed.
LA - eng
KW - Schur decomposition; partial differential system; eigenvalues bound; matrix norms; analytic-numerical solution; error bounds; matrix constructive method; series expansion; analytic-numerical methods; systems; separation of variables
UR - http://eudml.org/doc/32927
ER -
References
top- Mathematical Analysis, Addison-Wesley, Reading M.A., 1977. (1977)
- 10.1007/BF01386023, Numerische Math. 3 (1961), 241–246. (1961) MR0130105DOI10.1007/BF01386023
- Magnetohydrodynamic flow in electrodynamically coupled rectangular ducts I, Magn. Girodinam 2 (1976), 35–40. (1976)
- 10.1137/0124061, SIAM J. Appl. Math. 24 (1973), 596–602. (1973) MR0370318DOI10.1137/0124061
- 10.1090/qam/244596, Quart. Appl. Maths. XXVII (1969), 87–104. (1969) MR0244596DOI10.1090/qam/244596
- Fourier Series and Boundary Value Problems, McGraw-Hill, New York, 1978. (1978) MR0513825
- Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962. (1962) MR0065391
- Matrix Computations, Johns Hopkins Univ. Press, Baltimore M.A., 1985. (1985)
- 10.1016/0025-5564(77)90092-X, Math. Biosci. 37 (1977), 191–203. (1977) Zbl0368.90101MR0682615DOI10.1016/0025-5564(77)90092-X
- 10.1090/qam/950607, Quart. Appl. Maths. 46 (1988), no. 2, 353–364. (1988) MR0950607DOI10.1090/qam/950607
- 10.1080/00207169008803948, Int. J. Computer Math. 37 (1990), 201–212. (1990) DOI10.1080/00207169008803948
- 10.1080/00207169208804139, Int. J. Computer Math. 46 (1992), 63–75. (1992) DOI10.1080/00207169208804139
- 10.1016/0022-247X(82)90116-0, J. Math. Anal. Appl. 89 (1982), 530–557. (1982) MR0677744DOI10.1016/0022-247X(82)90116-0
- 10.1002/cpa.3160420206, Com. Pure Appl. Math. XLII (1989), 213–227. (1989) Zbl0664.92007MR0978705DOI10.1002/cpa.3160420206
- 10.1137/0727054, SIAM J. Numer. Anal. 27 (1990), no. 4, 941–962. (1990) MR1051115DOI10.1137/0727054
- 10.1016/0165-0270(91)90143-N, J. Neurosc. Methods 36 (1991), 105–114. (1991) DOI10.1016/0165-0270(91)90143-N
- 10.1137/1020098, SIAM Review 20 (1978), 801–836. (1978) MR0508383DOI10.1137/1020098
- 10.1002/fld.1650060903, Int. J. Numer. Methods Fluids 6 (1986), 593–609. (1986) Zbl0597.76116DOI10.1002/fld.1650060903
- Introduction to Numerical Analysis, Springer-Verlag, New York, 1980. (1980) MR0557543
- 10.1137/0124008, SIAM J. Appl. Math. 24 (1975), 62–80. (1975) MR0318657DOI10.1137/0124008
- Introduction to Partial Differential Equations with Applications, William and Wilkins, Baltimore, 1976. (1976) MR0463623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.