Finite element approximation of nonlinear elliptic problems with discontinuous coefficients

Miloslav Feistauer; Veronika Sobotíková

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 4, page 457-500
  • ISSN: 0764-583X

How to cite

top

Feistauer, Miloslav, and Sobotíková, Veronika. "Finite element approximation of nonlinear elliptic problems with discontinuous coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.4 (1990): 457-500. <http://eudml.org/doc/193603>.

@article{Feistauer1990,
author = {Feistauer, Miloslav, Sobotíková, Veronika},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Green's theorem; finite element; second-order nonlinear elliptic equations; discontinuous coefficients; nonpolygonal domain; mixed Dirichlet-Neumann boundary conditions; piecewise linear triangular elements; numerical quadratures; convergence; strongly monotone; error estimate},
language = {eng},
number = {4},
pages = {457-500},
publisher = {Dunod},
title = {Finite element approximation of nonlinear elliptic problems with discontinuous coefficients},
url = {http://eudml.org/doc/193603},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Feistauer, Miloslav
AU - Sobotíková, Veronika
TI - Finite element approximation of nonlinear elliptic problems with discontinuous coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 4
SP - 457
EP - 500
LA - eng
KW - Green's theorem; finite element; second-order nonlinear elliptic equations; discontinuous coefficients; nonpolygonal domain; mixed Dirichlet-Neumann boundary conditions; piecewise linear triangular elements; numerical quadratures; convergence; strongly monotone; error estimate
UR - http://eudml.org/doc/193603
ER -

References

top
  1. [1] L. BOCCARDO, G. BUTTAZZO, Quasilinear elliptic equations with discontinuons coefficients. Universita Degli Studi Di Piza, Dipartimento Di Matematica, Luglio 1987, Numero 206. Zbl0679.35035MR999834
  2. [2] P. G. CIARLET, The Finite Element Method for Elliptic Problems. Amsterdam : North-Holland 1978. Zbl0383.65058MR520174
  3. [3] P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177-199 (1972). Zbl0243.41004MR336957
  4. [4] P. G. CIARLET, P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element method. In :The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed. ), pp 409-474. New York : Academie Press 1972. Zbl0262.65070MR421108
  5. [5] M. FEISTAUER, On irrotational flows through cascades of profiles in a layer of variable thickness. Apl. Mat. 29, 423-458 (1984). Zbl0598.76061MR767495
  6. [6] M. FEISTAUER, Mathematical and numerical study of nonlinear problems in fluid mechanics. In : Proc. Conf. Equadiff 6, Brno 1985. (J. Vosmanský, M. Zlámal, eds. ), pp. 3-16, Berlin-Heidelberg : Springer 1986. Zbl0633.76025MR877102
  7. [7] M. FEISTAUER, On the finite element approximation of a cascade flow problem. Numer. Mat.h 50, 655-684 (1987). Zbl0646.76085MR884294
  8. [8] M. FEISTAUER, A. ŽENĺŠEK, Finite element solution of nonlinear elliptic problems. Numer. Math. 50, 451-475 (1987). Zbl0637.65107MR875168
  9. [9] M. FEISTAUER, A. ŽENĺŠEK, Compactness method in the finite element theory of nonlinear elliptic problems. Numer. Math. 52, 147-163 (1988). Zbl0642.65075MR923708
  10. [10] R. GLOWINSKI, A. MARROCCO, Analyse numérique du champ magnétique d'un alternateur par éléments finis et surrelaxation ponctuelle non lineaire. Comput. Methods Appl. Mech. Eng. 3, 55-85 (1974). Zbl0288.65068MR413547
  11. [11] R. GLOWINSKI, A. MARROCCO, Numerical solution of two-dimensional magnetostatic problems by augmented Lagrangian methods. Comput. Methods Appl. Mech. Eng. 12, 33-46 (1977). Zbl0364.65104
  12. [12] V. HRUSKOVA-SOBOTIKOVA, Numerical solution of nonlinear elliptic problems by the methods of the finite elements least squares and conjugate gradients. Thesis. Faculty of Mathematics and Physics, Charles University, Prague, 1987 (in Czech ). 
  13. [13] V. P. IL'IN, Singularities of weak solutions to elliptic boundary values problems with discontinuous coefficients at higher derivatives. Zapiski Naucnych Seminarov LOMI AN SSSR, T. 38, Leningrad 1973 (in Russian). 
  14. [14] V. KREISINGER, J. ADAM, Magnetic fields in nonlinear anisotropic ferromagnetics. Acta Technica CSAV, 209-241 (1984). Zbl0535.73084MR278544
  15. [15] A. KUFNER, O. JOHN, S. FUCIK, Function Spaces. Prague : Academia 1977. MR482102
  16. [16] J. L. LIONS, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Paris, Dunod 1969. Zbl0189.40603MR259693
  17. [17] A. MARROCCO, Analyse numérique de problèmes d'éléctrotechnique. Ann. Sc.Math. Québec, vol. 1, 271-296 (1977). Zbl0434.65093MR483548
  18. [18] J. NEČAS, Les Méthodes Directes en Théorie des Équations Elliptiques Prague, Academia 1967. MR227584
  19. [19] J. NEČAS, Introduction to the Theory of Nonlinear Elliptic Equations. Leipzig, Teubner Texte zur Mathematik, Band 52, 1983. Zbl0526.35003MR731261
  20. [20] L. A. OGANESJAN, L. A. DMITRENKO, Solution of elliptic equations with discontinuous coefficients on a regular mesh. ZVMMF, 14, No 4 (1974) (in Russian). Zbl0306.35041MR388806
  21. [21] V. J. RIVKIND, On the convergence estimates of homogeneous difference schemes for elliptic and parabolic equations with discontinuous coefficients. In : Proc « Problems of Mathematical Analysis », I, Leningrad Published by Leningrad State University, 1966 (in Russian). Zbl0199.50504MR221767
  22. [22] M. P. SAPAGOVAS, Finite-difference method for quasilinear elliptic equations with discontinuons coefficients. ZVMMF, 5, No 4 (1965) (in Russian). 
  23. [23] G. STAMPACCHIA, Équations elliptiques du second ordre a coefficients discontinus. Séminaire de Mathématiques Supérieures n° 16, Montréal : Les Presses de l'Université de Montréal, 1966. Zbl0151.15501MR251373
  24. [24] G. STRANG, Variational crimes in the fïnite element method. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (A. K. Aziz, ed. ), pp. 689-710. New York, Academic Press 1972. Zbl0264.65068MR413554
  25. [25] A. ŽENĺŠEK, Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. 26, 121-141 (1981). Zbl0475.65073MR612669
  26. [26] A. ŽENĺŠEK, Discrete forms of Friedrichs' inequalities in the finite element method. RAIRO Numer. Anal. 15, 265-286 (1981). Zbl0475.65072MR631681
  27. [27] A. ŽENĺŠEK, The finite element method for nonlinear elliptic equations with discontinuous coefficients. Preprint, Brno, 1988. Zbl0709.65081

Citations in EuDML Documents

top
  1. Jana Zlámalová, Semiregular finite elements in solving some nonlinear problems
  2. Liping Liu, Michal Křížek, Pekka Neittaanmäki, Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type
  3. Miloslav Feistauer, Karel Najzar, Veronika Sobotíková, On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains
  4. Jérôme Droniou, Finite volume schemes for fully non-linear elliptic equations in divergence form
  5. Miloslav Feistauer, Karel Najzar, Karel Švadlenka, On a parabolic problem with nonlinear Newton boundary conditions
  6. Jérôme Droniou, Finite volume schemes for fully non-linear elliptic equations in divergence form

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.