A direct global superconvergence analysis for Sobolev and viscoelasticity type equations
Applications of Mathematics (1997)
- Volume: 42, Issue: 1, page 23-34
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLin, Qun, and Zhang, Shu Hua. "A direct global superconvergence analysis for Sobolev and viscoelasticity type equations." Applications of Mathematics 42.1 (1997): 23-34. <http://eudml.org/doc/32965>.
@article{Lin1997,
abstract = {In this paper we study the finite element approximations to the Sobolev and viscoelasticity type equations and present a direct analysis for global superconvergence for these problems, without using Ritz projection or its modified forms.},
author = {Lin, Qun, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {Sobolev and viscoelasticity type equations; global superconvergence; direct analysis; finite element method; evolution equation; viscoelasticity type equations; global superconvergence; Sobolev equation; finite element method; evolution equation},
language = {eng},
number = {1},
pages = {23-34},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A direct global superconvergence analysis for Sobolev and viscoelasticity type equations},
url = {http://eudml.org/doc/32965},
volume = {42},
year = {1997},
}
TY - JOUR
AU - Lin, Qun
AU - Zhang, Shu Hua
TI - A direct global superconvergence analysis for Sobolev and viscoelasticity type equations
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 1
SP - 23
EP - 34
AB - In this paper we study the finite element approximations to the Sobolev and viscoelasticity type equations and present a direct analysis for global superconvergence for these problems, without using Ritz projection or its modified forms.
LA - eng
KW - Sobolev and viscoelasticity type equations; global superconvergence; direct analysis; finite element method; evolution equation; viscoelasticity type equations; global superconvergence; Sobolev equation; finite element method; evolution equation
UR - http://eudml.org/doc/32965
ER -
References
top- 10.1090/S0025-5718-1981-0595041-4, Math. Comp. 36 (1981), 53–63. (1981) MR0595041DOI10.1090/S0025-5718-1981-0595041-4
- 10.1137/0506029, SIAM J. Math. Anal. 6 (1975), 283–294. (1975) Zbl0292.35004MR0361447DOI10.1137/0506029
- 10.1137/0712028, SIAM J. Numer. Anal. 12 (1975), 345–363. (1975) MR0395265DOI10.1137/0712028
- 10.1007/BF01835978, Aequationes Math. 14 (1976), 271–291. (1976) MR0408270DOI10.1007/BF01835978
- 10.1090/S0025-5718-1973-0366052-4, Math. Comp. 27 (1973), 737–743. (1973) MR0366052DOI10.1090/S0025-5718-1973-0366052-4
- 10.1137/0711016, SIAM J. Numer. Anal. 11 (1974), 155–169. (1974) MR0423833DOI10.1137/0711016
- A new observation in FEM, Proc. Syst. Sci. & Syst. Eng. (1991), Great Wall (H.K.) Culture Publish Co., 389–391. (1991)
- A rectangle test for interpolated finite elements, ibid, 217–229.
- 10.1023/A:1022264125558, Appl. Math. 42 (1997), 1–21. (1997) MR1426677DOI10.1023/A:1022264125558
- 10.1007/BF02112280, Aequations Math. 40 (1990), 54–56. (1990) Zbl0734.65078MR1055190DOI10.1007/BF02112280
- 10.1016/0022-247X(92)90074-N, J. Math. Anal. & Appl. 165 (1992), 180–191. (1992) MR1151067DOI10.1016/0022-247X(92)90074-N
- 10.1137/0728056, SIAM J. Numer. Anal. 28 (1991), 1047–1070. (1991) MR1111453DOI10.1137/0728056
- 10.1007/BF01389881, Numer. Math. 47 (1985), 139–157. (1985) Zbl0575.65112MR0797883DOI10.1007/BF01389881
- 10.1007/BF01438256, Numer. Math. 23 (1975), 289–303. (1975) Zbl0283.65052MR0388799DOI10.1007/BF01438256
- 10.1137/0710062, SIAM J. Numer. Anal. 10 (1973), 723–759. (1973) MR0351124DOI10.1137/0710062
- Superconvergence Theory of the Finite Element Methods, Hunan Science Press, 1990. (1990)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.