Mathematical models of suspension bridges
Applications of Mathematics (1997)
- Volume: 42, Issue: 6, page 451-480
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- 10.1006/jmaa.1995.1454, Journal of Math. Anal. and Appl. 196 (1995), 965–986. (1995) MR1365234DOI10.1006/jmaa.1995.1454
- Jumping nonlinearities and mathematical models of suspension bridges, Acta Math. et Inf. Univ. Ostraviensis 2 (1994), 9–18. (1994) MR1309060
- 10.1016/0377-0427(94)90352-2, Journal of Comp. and Applied Mathematics 52 (1994), 113–140. (1994) MR1310126DOI10.1016/0377-0427(94)90352-2
- Nonlinear noncoercive problems, Conf. del Seminario di Mat. Univ. Bari (S. A. F. A. III), Bari, 1978, pp. 301–353. (1978) MR0585118
- 10.1007/BF00944997, ZAMP 40 (1989), 171–200. (1989) MR0990626DOI10.1007/BF00944997
- 10.1137/1032120, SIAMS Review 32 (1990), 537–578. (1990) MR1084570DOI10.1137/1032120
- 10.1007/BF00251232, Arch. Rational Mech. Anal. 98 (1987), 167–177. (1987) MR0866720DOI10.1007/BF00251232
Citations in EuDML Documents
top- Josef Malík, Torsional asymmetry in suspension bridge systems
- Petr Nečesal, On the resonance problem for the order ordinary differential equations, Fučík’s spectrum
- Pavel Drábek, Herbert Leinfelder, Gabriela Tajčová, Coupled string-beam equations as a model of suspension bridges
- Josef Malík, Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems
- Josef Malík, Instability of oscillations in cable-stayed bridges
- Gabriela Liţcanu, A mathematical model of suspension bridges
- Pavel Drábek, Gabriela Holubová, Aleš Matas, Petr Nečesal, Nonlinear models of suspension bridges: discussion of the results