Coupled string-beam equations as a model of suspension bridges

Pavel Drábek; Herbert Leinfelder; Gabriela Tajčová

Applications of Mathematics (1999)

  • Volume: 44, Issue: 2, page 97-142
  • ISSN: 0862-7940

Abstract

top
We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.

How to cite

top

Drábek, Pavel, Leinfelder, Herbert, and Tajčová, Gabriela. "Coupled string-beam equations as a model of suspension bridges." Applications of Mathematics 44.2 (1999): 97-142. <http://eudml.org/doc/33029>.

@article{Drábek1999,
abstract = {We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.},
author = {Drábek, Pavel, Leinfelder, Herbert, Tajčová, Gabriela},
journal = {Applications of Mathematics},
keywords = {nonlinearly coupled string-beam equation; periodic oscillations; jumping nonlinearities; degree theory; coupled string-beam equation; periodic oscillations; jumping nonlinearities},
language = {eng},
number = {2},
pages = {97-142},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coupled string-beam equations as a model of suspension bridges},
url = {http://eudml.org/doc/33029},
volume = {44},
year = {1999},
}

TY - JOUR
AU - Drábek, Pavel
AU - Leinfelder, Herbert
AU - Tajčová, Gabriela
TI - Coupled string-beam equations as a model of suspension bridges
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 2
SP - 97
EP - 142
AB - We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.
LA - eng
KW - nonlinearly coupled string-beam equation; periodic oscillations; jumping nonlinearities; degree theory; coupled string-beam equation; periodic oscillations; jumping nonlinearities
UR - http://eudml.org/doc/33029
ER -

References

top
  1. 10.1006/jmaa.1995.1454, J. Math. Anal. Applications 196 (1995), 965–986. (1995) MR1365234DOI10.1006/jmaa.1995.1454
  2. Time-periodic oscillations in suspension bridges: existence of unique solutions, Nonlinear Analysis, Theory, Methods & Applications. 
  3. The existence of solutions of a nonlinear suspension bridge equation, Bull. Korean Math. Soc. 33 (1996), 503–512. (1996) MR1424092
  4. Jumping nonlinearities and mathematical models of suspension bridges, Acta Math. Inf. Univ. Ostraviensis 2 (1994), 9–18. (1994) MR1309060
  5. 10.4171/ZAA/35, Z. Anal. Anwendungen 1 (1983), 53–65. (1983) MR0720043DOI10.4171/ZAA/35
  6. Nonlinear Differential Equations, Elsevier, Holland, 1980. (1980) MR0558764
  7. 10.1016/0377-0427(94)90352-2, J. Comput. Appl. Math. 52 (1994), 113–140. (1994) MR1310126DOI10.1016/0377-0427(94)90352-2
  8. 10.1007/BF00944997, J. Appl. Math. Physics (ZAMP) 40 (1989), 172–200. (1989) MR0990626DOI10.1007/BF00944997
  9. Function Spaces, Academia, Prague, 1977. (1977) MR0482102
  10. 10.1090/conm/107/1066474, Contemporary Math. 107 (1990), 109–122. (1990) MR1066474DOI10.1090/conm/107/1066474
  11. 10.1090/S0002-9939-1989-0942635-9, Proc. Amer. Math. Society 106 (1989), 119–125. (1989) MR0942635DOI10.1090/S0002-9939-1989-0942635-9
  12. 10.1090/S0002-9947-1989-0979963-1, Trans. Amer. Math. Society 315 (1989), 721–739. (1989) MR0979963DOI10.1090/S0002-9947-1989-0979963-1
  13. 10.1137/1032120, SIAM Review 32 (1990), 537–578. (1990) MR1084570DOI10.1137/1032120
  14. Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. Henri Poincaré, Analyse non lineaire 4 (1987), 244–274. (1987) MR0898049
  15. 10.1007/BF00251232, Arch. Rational Mech. Anal. 98 (1987), 167–177. (1987) MR0866720DOI10.1007/BF00251232
  16. Maximum Principles in Differential Equations, Springer-Verlag New York, 1984. (1984) MR0762825
  17. 10.1023/A:1022255113612, Appl. Math. 42 (1997), 451–480. (1997) MR1475052DOI10.1023/A:1022255113612
  18. Partial Differential Equations—time periodic solutions, Sijthoff Nordhoff, The Netherlands, 1981. (1981) 
  19. Linear Operators in Hilbert Spaces, Springer-Verlag, New York-Heidelberg-Berlin 1980. Zbl1025.47001MR0566954

Citations in EuDML Documents

top
  1. Josef Malík, Torsional asymmetry in suspension bridge systems
  2. Josef Malík, Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems
  3. Josef Malík, Instability of oscillations in cable-stayed bridges
  4. Pavel Drábek, Gabriela Holubová, Aleš Matas, Petr Nečesal, Nonlinear models of suspension bridges: discussion of the results
  5. Gabriela Liţcanu, A mathematical model of suspension bridges

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.