Coupled string-beam equations as a model of suspension bridges
Pavel Drábek; Herbert Leinfelder; Gabriela Tajčová
Applications of Mathematics (1999)
- Volume: 44, Issue: 2, page 97-142
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDrábek, Pavel, Leinfelder, Herbert, and Tajčová, Gabriela. "Coupled string-beam equations as a model of suspension bridges." Applications of Mathematics 44.2 (1999): 97-142. <http://eudml.org/doc/33029>.
@article{Drábek1999,
abstract = {We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.},
author = {Drábek, Pavel, Leinfelder, Herbert, Tajčová, Gabriela},
journal = {Applications of Mathematics},
keywords = {nonlinearly coupled string-beam equation; periodic oscillations; jumping nonlinearities; degree theory; coupled string-beam equation; periodic oscillations; jumping nonlinearities},
language = {eng},
number = {2},
pages = {97-142},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coupled string-beam equations as a model of suspension bridges},
url = {http://eudml.org/doc/33029},
volume = {44},
year = {1999},
}
TY - JOUR
AU - Drábek, Pavel
AU - Leinfelder, Herbert
AU - Tajčová, Gabriela
TI - Coupled string-beam equations as a model of suspension bridges
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 2
SP - 97
EP - 142
AB - We consider nonlinearly coupled string-beam equations modelling time-periodic oscillations in suspension bridges. We prove the existence of a unique solution under suitable assumptions on certain parameters of the bridge.
LA - eng
KW - nonlinearly coupled string-beam equation; periodic oscillations; jumping nonlinearities; degree theory; coupled string-beam equation; periodic oscillations; jumping nonlinearities
UR - http://eudml.org/doc/33029
ER -
References
top- 10.1006/jmaa.1995.1454, J. Math. Anal. Applications 196 (1995), 965–986. (1995) MR1365234DOI10.1006/jmaa.1995.1454
- Time-periodic oscillations in suspension bridges: existence of unique solutions, Nonlinear Analysis, Theory, Methods & Applications.
- The existence of solutions of a nonlinear suspension bridge equation, Bull. Korean Math. Soc. 33 (1996), 503–512. (1996) MR1424092
- Jumping nonlinearities and mathematical models of suspension bridges, Acta Math. Inf. Univ. Ostraviensis 2 (1994), 9–18. (1994) MR1309060
- 10.4171/ZAA/35, Z. Anal. Anwendungen 1 (1983), 53–65. (1983) MR0720043DOI10.4171/ZAA/35
- Nonlinear Differential Equations, Elsevier, Holland, 1980. (1980) MR0558764
- 10.1016/0377-0427(94)90352-2, J. Comput. Appl. Math. 52 (1994), 113–140. (1994) MR1310126DOI10.1016/0377-0427(94)90352-2
- 10.1007/BF00944997, J. Appl. Math. Physics (ZAMP) 40 (1989), 172–200. (1989) MR0990626DOI10.1007/BF00944997
- Function Spaces, Academia, Prague, 1977. (1977) MR0482102
- 10.1090/conm/107/1066474, Contemporary Math. 107 (1990), 109–122. (1990) MR1066474DOI10.1090/conm/107/1066474
- 10.1090/S0002-9939-1989-0942635-9, Proc. Amer. Math. Society 106 (1989), 119–125. (1989) MR0942635DOI10.1090/S0002-9939-1989-0942635-9
- 10.1090/S0002-9947-1989-0979963-1, Trans. Amer. Math. Society 315 (1989), 721–739. (1989) MR0979963DOI10.1090/S0002-9947-1989-0979963-1
- 10.1137/1032120, SIAM Review 32 (1990), 537–578. (1990) MR1084570DOI10.1137/1032120
- Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. Henri Poincaré, Analyse non lineaire 4 (1987), 244–274. (1987) MR0898049
- 10.1007/BF00251232, Arch. Rational Mech. Anal. 98 (1987), 167–177. (1987) MR0866720DOI10.1007/BF00251232
- Maximum Principles in Differential Equations, Springer-Verlag New York, 1984. (1984) MR0762825
- 10.1023/A:1022255113612, Appl. Math. 42 (1997), 451–480. (1997) MR1475052DOI10.1023/A:1022255113612
- Partial Differential Equations—time periodic solutions, Sijthoff Nordhoff, The Netherlands, 1981. (1981)
- Linear Operators in Hilbert Spaces, Springer-Verlag, New York-Heidelberg-Berlin 1980. Zbl1025.47001MR0566954
Citations in EuDML Documents
top- Josef Malík, Torsional asymmetry in suspension bridge systems
- Josef Malík, Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems
- Josef Malík, Instability of oscillations in cable-stayed bridges
- Pavel Drábek, Gabriela Holubová, Aleš Matas, Petr Nečesal, Nonlinear models of suspension bridges: discussion of the results
- Gabriela Liţcanu, A mathematical model of suspension bridges
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.