Torsional asymmetry in suspension bridge systems
Applications of Mathematics (2015)
- Volume: 60, Issue: 6, page 677-701
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMalík, Josef. "Torsional asymmetry in suspension bridge systems." Applications of Mathematics 60.6 (2015): 677-701. <http://eudml.org/doc/271836>.
@article{Malík2015,
abstract = {In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.},
author = {Malík, Josef},
journal = {Applications of Mathematics},
keywords = {suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data; suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data},
language = {eng},
number = {6},
pages = {677-701},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Torsional asymmetry in suspension bridge systems},
url = {http://eudml.org/doc/271836},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Malík, Josef
TI - Torsional asymmetry in suspension bridge systems
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 6
SP - 677
EP - 701
AB - In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.
LA - eng
KW - suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data; suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data
UR - http://eudml.org/doc/271836
ER -
References
top- Ahmed, N. U., Harbi, H., 10.1137/S0036139996308698, SIAM J. Appl. Math. 58 (1998), 853-874. (1998) Zbl0912.93048MR1616611DOI10.1137/S0036139996308698
- An, Y., 10.1016/S0362-546X(01)00899-9, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 1285-1292. (2002) Zbl1165.74323MR1926630DOI10.1016/S0362-546X(01)00899-9
- An, Y., Zhong, C., 10.1016/S0022-247X(03)00035-0, J. Math. Anal. Appl. 279 (2003), 569-579. (2003) Zbl1029.35022MR1974046DOI10.1016/S0022-247X(03)00035-0
- Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G., Time-periodic oscillations in suspension bridges: existence of unique solutions, Nonlinear Anal., Real World Appl. 1 (2000), 345-362. (2000) Zbl0989.74031MR1791531
- Choi, Y. S., Jen, K. C., McKenna, P. J., 10.1093/imamat/47.3.283, IMA J. Appl. Math. 47 (1991), 283-306. (1991) Zbl0756.73041MR1141492DOI10.1093/imamat/47.3.283
- Ding, Z., 10.1016/S0022-247X(02)00051-3, J. Math. Anal. Appl. 269 (2002), 726-746. (2002) Zbl1003.35089MR1907140DOI10.1016/S0022-247X(02)00051-3
- Ding, Z., 10.1016/S0362-546X(01)00726-X, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 1079-1097. (2002) Zbl1029.35023MR1942667DOI10.1016/S0362-546X(01)00726-X
- Drábek, P., Leinfelder, H., Tajčová, G., 10.1023/A:1022257304738, Appl. Math., Praha 44 (1999), 97-142. (1999) Zbl1059.74522MR1667633DOI10.1023/A:1022257304738
- Edwards, R. E., Functional Analysis. Theory and Applications, Holt Rinehart and Winston New York (1965). (1965) Zbl0182.16101MR0221256
- Fonda, A., Schneider, Z., Zanolin, F., 10.1016/0377-0427(94)90352-2, J. Comput. Appl. Math. 52 (1994), 113-140. (1994) Zbl0810.73030MR1310126DOI10.1016/0377-0427(94)90352-2
- Gajewski, H., Gröger, K., Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, German Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38 Akademie-Verlag, Berlin (1974). (1974) MR0636412
- Glover, J., Lazer, A. C., McKenna, P. J., 10.1007/BF00944997, Z. Angew. Math. Phys. 40 (1989), 172-200. (1989) Zbl0677.73046MR0990626DOI10.1007/BF00944997
- Holubová, G., Matas, A., 10.1016/j.jmaa.2003.09.028, J. Math. Anal. Appl. 288 (2003), 784-802. (2003) Zbl1037.35087MR2020197DOI10.1016/j.jmaa.2003.09.028
- Lazer, A. C., McKenna, P. J., 10.1137/1032120, SIAM Rev. 32 (1990), 537-578. (1990) Zbl0725.73057MR1084570DOI10.1137/1032120
- Malík, J., 10.1016/j.jmaa.2006.01.003, J. Math. Anal. Appl. 324 (2006), 1288-1296. (2006) Zbl1139.74026MR2266559DOI10.1016/j.jmaa.2006.01.003
- Malík, J., 10.1016/j.jmaa.2005.08.080, J. Math. Anal. Appl. 321 (2006), 828-850. (2006) Zbl1139.74026MR2241158DOI10.1016/j.jmaa.2005.08.080
- Malík, J., 10.1016/j.jsv.2013.02.011, J. Sound Vib. 332 (2013), 3772-3789. (2013) DOI10.1016/j.jsv.2013.02.011
- McKenna, P. J., 10.2307/2589581, Am. Math. Mon. 106 (1999), 1-18. (1999) Zbl1076.70509MR1674145DOI10.2307/2589581
- McKenna, P. J., Walter, W., 10.1007/BF00251232, Arch. Ration. Mech. Anal. 98 (1987), 167-177. (1987) Zbl0676.35003MR0866720DOI10.1007/BF00251232
- Plaut, R. H., 10.1016/j.jsv.2007.07.057, J. Sound Vib. 309 (2008), 613-636. (2008) DOI10.1016/j.jsv.2007.07.057
- Plaut, R. H., Davis, F. M., 10.1016/j.jsv.2007.07.036, J. Sound Vib. 307 (2007), 894-905. (2007) DOI10.1016/j.jsv.2007.07.036
- Pugsley, A., The Theory of Suspension Bridges, Edward Arnold, London (1968). (1968)
- Scanlan, R. H., 10.1016/S0022-460X(78)80028-5, J. Sound Vib. 60 (1978), 187-199. (1978) Zbl0384.73027DOI10.1016/S0022-460X(78)80028-5
- Scanlan, R. H., 10.1016/S0022-460X(78)80029-7, J. Sound Vib. 60 (1978), 201-211. (1978) Zbl0384.73028DOI10.1016/S0022-460X(78)80029-7
- Simiu, E., Scanlan, R. H., Wind Effects on Structures: Fundamentals and Applications to Design, Wiley, New York (1996). (1996)
- Tajčová, G., 10.1023/A:1022255113612, Appl. Math., Praha 42 (1997), 451-480. (1997) Zbl1042.74535MR1475052DOI10.1023/A:1022255113612
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer, New York (1990). (1990) Zbl0684.47028MR1033497
- http://www.youtube.com/watch?v=3mclp9QmCGs, .
- http://www.youtube.com/watch?v=j-zczJXSxnw, .
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.