Torsional asymmetry in suspension bridge systems

Josef Malík

Applications of Mathematics (2015)

  • Volume: 60, Issue: 6, page 677-701
  • ISSN: 0862-7940

Abstract

top
In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.

How to cite

top

Malík, Josef. "Torsional asymmetry in suspension bridge systems." Applications of Mathematics 60.6 (2015): 677-701. <http://eudml.org/doc/271836>.

@article{Malík2015,
abstract = {In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.},
author = {Malík, Josef},
journal = {Applications of Mathematics},
keywords = {suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data; suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data},
language = {eng},
number = {6},
pages = {677-701},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Torsional asymmetry in suspension bridge systems},
url = {http://eudml.org/doc/271836},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Malík, Josef
TI - Torsional asymmetry in suspension bridge systems
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 6
SP - 677
EP - 701
AB - In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence on data are proved.
LA - eng
KW - suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data; suspension bridge; Hamilton principle; vertical oscillation; torsional oscillation; existence; uniqueness; continuous dependence on data
UR - http://eudml.org/doc/271836
ER -

References

top
  1. Ahmed, N. U., Harbi, H., 10.1137/S0036139996308698, SIAM J. Appl. Math. 58 (1998), 853-874. (1998) Zbl0912.93048MR1616611DOI10.1137/S0036139996308698
  2. An, Y., 10.1016/S0362-546X(01)00899-9, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 1285-1292. (2002) Zbl1165.74323MR1926630DOI10.1016/S0362-546X(01)00899-9
  3. An, Y., Zhong, C., 10.1016/S0022-247X(03)00035-0, J. Math. Anal. Appl. 279 (2003), 569-579. (2003) Zbl1029.35022MR1974046DOI10.1016/S0022-247X(03)00035-0
  4. Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G., Time-periodic oscillations in suspension bridges: existence of unique solutions, Nonlinear Anal., Real World Appl. 1 (2000), 345-362. (2000) Zbl0989.74031MR1791531
  5. Choi, Y. S., Jen, K. C., McKenna, P. J., 10.1093/imamat/47.3.283, IMA J. Appl. Math. 47 (1991), 283-306. (1991) Zbl0756.73041MR1141492DOI10.1093/imamat/47.3.283
  6. Ding, Z., 10.1016/S0022-247X(02)00051-3, J. Math. Anal. Appl. 269 (2002), 726-746. (2002) Zbl1003.35089MR1907140DOI10.1016/S0022-247X(02)00051-3
  7. Ding, Z., 10.1016/S0362-546X(01)00726-X, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 1079-1097. (2002) Zbl1029.35023MR1942667DOI10.1016/S0362-546X(01)00726-X
  8. Drábek, P., Leinfelder, H., Tajčová, G., 10.1023/A:1022257304738, Appl. Math., Praha 44 (1999), 97-142. (1999) Zbl1059.74522MR1667633DOI10.1023/A:1022257304738
  9. Edwards, R. E., Functional Analysis. Theory and Applications, Holt Rinehart and Winston New York (1965). (1965) Zbl0182.16101MR0221256
  10. Fonda, A., Schneider, Z., Zanolin, F., 10.1016/0377-0427(94)90352-2, J. Comput. Appl. Math. 52 (1994), 113-140. (1994) Zbl0810.73030MR1310126DOI10.1016/0377-0427(94)90352-2
  11. Gajewski, H., Gröger, K., Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, German Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38 Akademie-Verlag, Berlin (1974). (1974) MR0636412
  12. Glover, J., Lazer, A. C., McKenna, P. J., 10.1007/BF00944997, Z. Angew. Math. Phys. 40 (1989), 172-200. (1989) Zbl0677.73046MR0990626DOI10.1007/BF00944997
  13. Holubová, G., Matas, A., 10.1016/j.jmaa.2003.09.028, J. Math. Anal. Appl. 288 (2003), 784-802. (2003) Zbl1037.35087MR2020197DOI10.1016/j.jmaa.2003.09.028
  14. Lazer, A. C., McKenna, P. J., 10.1137/1032120, SIAM Rev. 32 (1990), 537-578. (1990) Zbl0725.73057MR1084570DOI10.1137/1032120
  15. Malík, J., 10.1016/j.jmaa.2006.01.003, J. Math. Anal. Appl. 324 (2006), 1288-1296. (2006) Zbl1139.74026MR2266559DOI10.1016/j.jmaa.2006.01.003
  16. Malík, J., 10.1016/j.jmaa.2005.08.080, J. Math. Anal. Appl. 321 (2006), 828-850. (2006) Zbl1139.74026MR2241158DOI10.1016/j.jmaa.2005.08.080
  17. Malík, J., 10.1016/j.jsv.2013.02.011, J. Sound Vib. 332 (2013), 3772-3789. (2013) DOI10.1016/j.jsv.2013.02.011
  18. McKenna, P. J., 10.2307/2589581, Am. Math. Mon. 106 (1999), 1-18. (1999) Zbl1076.70509MR1674145DOI10.2307/2589581
  19. McKenna, P. J., Walter, W., 10.1007/BF00251232, Arch. Ration. Mech. Anal. 98 (1987), 167-177. (1987) Zbl0676.35003MR0866720DOI10.1007/BF00251232
  20. Plaut, R. H., 10.1016/j.jsv.2007.07.057, J. Sound Vib. 309 (2008), 613-636. (2008) DOI10.1016/j.jsv.2007.07.057
  21. Plaut, R. H., Davis, F. M., 10.1016/j.jsv.2007.07.036, J. Sound Vib. 307 (2007), 894-905. (2007) DOI10.1016/j.jsv.2007.07.036
  22. Pugsley, A., The Theory of Suspension Bridges, Edward Arnold, London (1968). (1968) 
  23. Scanlan, R. H., 10.1016/S0022-460X(78)80028-5, J. Sound Vib. 60 (1978), 187-199. (1978) Zbl0384.73027DOI10.1016/S0022-460X(78)80028-5
  24. Scanlan, R. H., 10.1016/S0022-460X(78)80029-7, J. Sound Vib. 60 (1978), 201-211. (1978) Zbl0384.73028DOI10.1016/S0022-460X(78)80029-7
  25. Simiu, E., Scanlan, R. H., Wind Effects on Structures: Fundamentals and Applications to Design, Wiley, New York (1996). (1996) 
  26. Tajčová, G., 10.1023/A:1022255113612, Appl. Math., Praha 42 (1997), 451-480. (1997) Zbl1042.74535MR1475052DOI10.1023/A:1022255113612
  27. Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer, New York (1990). (1990) Zbl0684.47028MR1033497
  28. http://www.youtube.com/watch?v=3mclp9QmCGs, . 
  29. http://www.youtube.com/watch?v=j-zczJXSxnw, . 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.