A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration

Heinrich Voss

Applications of Mathematics (2003)

  • Volume: 48, Issue: 6, page 607-622
  • ISSN: 0862-7940

Abstract

top
In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction.

How to cite

top

Voss, Heinrich. "A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration." Applications of Mathematics 48.6 (2003): 607-622. <http://eudml.org/doc/33171>.

@article{Voss2003,
abstract = {In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction.},
author = {Voss, Heinrich},
journal = {Applications of Mathematics},
keywords = {nonlinear eigenvalue problem; variational characterization; maxmin principle; fluid structure interaction; nonlinear eigenvalue problem; variational characterization; fluid structure interaction},
language = {eng},
number = {6},
pages = {607-622},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration},
url = {http://eudml.org/doc/33171},
volume = {48},
year = {2003},
}

TY - JOUR
AU - Voss, Heinrich
TI - A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 6
SP - 607
EP - 622
AB - In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction.
LA - eng
KW - nonlinear eigenvalue problem; variational characterization; maxmin principle; fluid structure interaction; nonlinear eigenvalue problem; variational characterization; fluid structure interaction
UR - http://eudml.org/doc/33171
ER -

References

top
  1. 10.1016/0020-7225(74)90051-2, Internat. J. Engrg. Sci. 12 (1974), 413–421. (1974) Zbl0288.15023MR0448226DOI10.1016/0020-7225(74)90051-2
  2. 10.1016/0045-7825(89)90078-9, Comput. Methods Appl. Mech. Engrg. 77 (1989), 253–291. (1989) MR1031134DOI10.1016/0045-7825(89)90078-9
  3. 10.1007/BF01199396, Math. Z. 7 (1920), 1–57. (1920) MR1544417DOI10.1007/BF01199396
  4. A minmax theory for overdamped networks, J. Ration. Mech. Anal. 4 (1955), 221–233. (1955) MR0069030
  5. Linear Operators, Part II, Wiley, New York-London, 1963. (1963) MR1009163
  6. Über quadratische Formen mit reellen Koeffizienten, Monatshefte für Math. und Phys. 16 (1905), 234–249. (1905) MR1547416
  7. 10.1007/BF00281717, Arch. Ration. Mech. Anal. 27 (1967), 306–328. (1967) Zbl0166.41701MR0222691DOI10.1007/BF00281717
  8. 10.1007/BF00281537, Arch. Ration. Mech. Anal. 30 (1968), 297–307. (1968) Zbl0165.48101MR0234322DOI10.1007/BF00281537
  9. Nonlinear Eigenvalue Problems, In: Numerische Behandlung von Differentialgleichungen, R.  Ansorge, L.  Collatz, G.  Hämmerlin and W.  Törnig (eds.), Birkhäuser, Stuttgart, 1975, pp. 111–129. (1975) Zbl0342.65024MR0405221
  10. Über stark gedämpfte Scharen im Hilbertraum, J. Math. Mech. 17 (1968), 685–705. (1968) Zbl0157.21303MR0229072
  11. 10.1016/0045-7825(82)90055-X, Comput. Methods Appl. Mech. Engrg. 30 (1982), 75–93. (1982) Zbl0483.70016MR0659568DOI10.1016/0045-7825(82)90055-X
  12. Sur les équations aux dérivées partielles de la physique mathématique, Amer. J. Math. 12 (1890), 211–294. (1890) MR1505534
  13. Some general theorems relating to vibrations, Proc. London Math. Soc. 4 (1873), 357–368. (1873) 
  14. Variationsmethoden in Mathematik, Physik und Technik, Carl Hanser Verlag, München, 1984. (1984) Zbl0568.49001MR0799323
  15. 10.1007/BF00281333, Arch. Ration. Mech. Anal. 16 (1964), 89–96. (1964) MR0163459DOI10.1007/BF00281333
  16. Variational properties of nonlinear spectra, J. Math. Mech. 18 (1968), 479–490. (1968) Zbl0175.13702MR0234309
  17. 10.1016/0022-247X(67)90172-2, J. Math. Anal. Appl. 17 (1967), 151–160. (1967) MR0209893DOI10.1016/0022-247X(67)90172-2
  18. A class of nonlinear eigenvalue problems, J. Funct. Anal. 7 (1968), 297–322. (1968) Zbl0169.17004MR0233223
  19. 10.1002/mma.1670040126, Math. Methods Appl. Sci. 4 (1982), 415–424. (1982) MR0669135DOI10.1002/mma.1670040126
  20. 10.1007/BF00250487, Arch. Ration. Mech. Anal. 42 (1971), 223–238. (1971) MR0348521DOI10.1007/BF00250487
  21. 10.1007/BF01456804, Math. Ann. 71 (1912), 441–479. (1912) MR1511670DOI10.1007/BF01456804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.