A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration
Applications of Mathematics (2003)
- Volume: 48, Issue: 6, page 607-622
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVoss, Heinrich. "A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration." Applications of Mathematics 48.6 (2003): 607-622. <http://eudml.org/doc/33171>.
@article{Voss2003,
abstract = {In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction.},
author = {Voss, Heinrich},
journal = {Applications of Mathematics},
keywords = {nonlinear eigenvalue problem; variational characterization; maxmin principle; fluid structure interaction; nonlinear eigenvalue problem; variational characterization; fluid structure interaction},
language = {eng},
number = {6},
pages = {607-622},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration},
url = {http://eudml.org/doc/33171},
volume = {48},
year = {2003},
}
TY - JOUR
AU - Voss, Heinrich
TI - A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 6
SP - 607
EP - 622
AB - In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction.
LA - eng
KW - nonlinear eigenvalue problem; variational characterization; maxmin principle; fluid structure interaction; nonlinear eigenvalue problem; variational characterization; fluid structure interaction
UR - http://eudml.org/doc/33171
ER -
References
top- 10.1016/0020-7225(74)90051-2, Internat. J. Engrg. Sci. 12 (1974), 413–421. (1974) Zbl0288.15023MR0448226DOI10.1016/0020-7225(74)90051-2
- 10.1016/0045-7825(89)90078-9, Comput. Methods Appl. Mech. Engrg. 77 (1989), 253–291. (1989) MR1031134DOI10.1016/0045-7825(89)90078-9
- 10.1007/BF01199396, Math. Z. 7 (1920), 1–57. (1920) MR1544417DOI10.1007/BF01199396
- A minmax theory for overdamped networks, J. Ration. Mech. Anal. 4 (1955), 221–233. (1955) MR0069030
- Linear Operators, Part II, Wiley, New York-London, 1963. (1963) MR1009163
- Über quadratische Formen mit reellen Koeffizienten, Monatshefte für Math. und Phys. 16 (1905), 234–249. (1905) MR1547416
- 10.1007/BF00281717, Arch. Ration. Mech. Anal. 27 (1967), 306–328. (1967) Zbl0166.41701MR0222691DOI10.1007/BF00281717
- 10.1007/BF00281537, Arch. Ration. Mech. Anal. 30 (1968), 297–307. (1968) Zbl0165.48101MR0234322DOI10.1007/BF00281537
- Nonlinear Eigenvalue Problems, In: Numerische Behandlung von Differentialgleichungen, R. Ansorge, L. Collatz, G. Hämmerlin and W. Törnig (eds.), Birkhäuser, Stuttgart, 1975, pp. 111–129. (1975) Zbl0342.65024MR0405221
- Über stark gedämpfte Scharen im Hilbertraum, J. Math. Mech. 17 (1968), 685–705. (1968) Zbl0157.21303MR0229072
- 10.1016/0045-7825(82)90055-X, Comput. Methods Appl. Mech. Engrg. 30 (1982), 75–93. (1982) Zbl0483.70016MR0659568DOI10.1016/0045-7825(82)90055-X
- Sur les équations aux dérivées partielles de la physique mathématique, Amer. J. Math. 12 (1890), 211–294. (1890) MR1505534
- Some general theorems relating to vibrations, Proc. London Math. Soc. 4 (1873), 357–368. (1873)
- Variationsmethoden in Mathematik, Physik und Technik, Carl Hanser Verlag, München, 1984. (1984) Zbl0568.49001MR0799323
- 10.1007/BF00281333, Arch. Ration. Mech. Anal. 16 (1964), 89–96. (1964) MR0163459DOI10.1007/BF00281333
- Variational properties of nonlinear spectra, J. Math. Mech. 18 (1968), 479–490. (1968) Zbl0175.13702MR0234309
- 10.1016/0022-247X(67)90172-2, J. Math. Anal. Appl. 17 (1967), 151–160. (1967) MR0209893DOI10.1016/0022-247X(67)90172-2
- A class of nonlinear eigenvalue problems, J. Funct. Anal. 7 (1968), 297–322. (1968) Zbl0169.17004MR0233223
- 10.1002/mma.1670040126, Math. Methods Appl. Sci. 4 (1982), 415–424. (1982) MR0669135DOI10.1002/mma.1670040126
- 10.1007/BF00250487, Arch. Ration. Mech. Anal. 42 (1971), 223–238. (1971) MR0348521DOI10.1007/BF00250487
- 10.1007/BF01456804, Math. Ann. 71 (1912), 441–479. (1912) MR1511670DOI10.1007/BF01456804
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.