Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity
Applications of Mathematics (2004)
- Volume: 49, Issue: 4, page 309-341
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKlein, Olaf. "Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity." Applications of Mathematics 49.4 (2004): 309-341. <http://eudml.org/doc/33187>.
@article{Klein2004,
abstract = {The asymptotic behaviour for $t \rightarrow \infty $ of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in the phase evolution equation are described by using the mathematical theory of hysteresis operators.},
author = {Klein, Olaf},
journal = {Applications of Mathematics},
keywords = {phase-field system; phase transition; hysteresis operator; thermo-visco-plasticity; asymptotic behaviour; phase transition; long-time behaviour; energy dissipation},
language = {eng},
number = {4},
pages = {309-341},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity},
url = {http://eudml.org/doc/33187},
volume = {49},
year = {2004},
}
TY - JOUR
AU - Klein, Olaf
TI - Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 309
EP - 341
AB - The asymptotic behaviour for $t \rightarrow \infty $ of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in the phase evolution equation are described by using the mathematical theory of hysteresis operators.
LA - eng
KW - phase-field system; phase transition; hysteresis operator; thermo-visco-plasticity; asymptotic behaviour; phase transition; long-time behaviour; energy dissipation
UR - http://eudml.org/doc/33187
ER -
References
top- 10.1016/0022-0396(80)90040-6, J. Differential Equations 35 (1980), 200–231. (1980) Zbl0415.35018MR0561978DOI10.1016/0022-0396(80)90040-6
- 10.1002/pssa.2211250115, Phys. Stat. Sol. (A) 125 (1991), 179–190. (1991) DOI10.1002/pssa.2211250115
- Hysteresis and Phase Transitions, Springer-Verlag, New York, 1996. (1996) MR1411908
- Shape Memory Materials and their Applications. Vol. 394–395 of Materials Science Forum, Y. Y. Chu, L. C. Zhao (eds.), Trans Tech Publications, Switzerland, 2002. (2002)
- Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal. 6 (1982), 434–454. (1982) MR0661710
- 10.1016/0001-6160(80)90030-9, Acta Met. 28 (1980), 1773–1780. (1980) DOI10.1016/0001-6160(80)90030-9
- 10.1007/BF01308772, Z. Physik B—Condensed Matter 51 (1983), 177–185. (1983) DOI10.1007/BF01308772
- 10.1016/0020-7225(89)90115-8, Internat. J. Engrg. Sci. 27 (1989), 277–284. (1989) DOI10.1016/0020-7225(89)90115-8
- Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. (2002) Zbl0990.80001MR1885252
- Shape Memory Alloys, CISM Courses and Lectures, Vol. 351, Springer-Verlag, , 1996. (1996)
- 10.1002/1099-1476(20000710)23:10<909::AID-MMA142>3.0.CO;2-E, Math. Methods Appl. Sci. 23 (2000), 909–922. (2000) MR1765906DOI10.1002/1099-1476(20000710)23:10<909::AID-MMA142>3.0.CO;2-E
- Existence results for a phase-field model in one-dimensional thermo-visco-plasticity involving unbounded hysteresis operators, In preparation.
- Outwards pointing hysteresis operators and and asymptotic behaviour of evolution equations, Nonlinear Anal. Real World Appl. 4 (2003), 755–785. (2003) MR1978561
- Systems with Hysteresis, Springer-Verlag, Heidelberg, 1989; Russian edition: Nauka, Moscow, 1983. (1989; Russian edition: Nauka, Moscow, 1983) MR0742931
- Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Internat. Ser. Math. Sci. Appl. Vol. 8, Gakkōtosho, Tokyo, 1996. (1996) MR2466538
- 10.1006/jmaa.1997.5304, J. Math. Anal. Appl. 209 (1997), 25–46. (1997) MR1444509DOI10.1006/jmaa.1997.5304
- 10.1023/A:1023276524286, Appl. Math. 43 (1998), 207–222. (1998) MR1620620DOI10.1023/A:1023276524286
- 10.1023/A:1023224507448, Appl. Math. 43 (1998), 173–205. (1998) MR1620624DOI10.1023/A:1023224507448
- 10.1016/S0362-546X(98)00222-3, Nonlinear Anal. Ser. A 39 (2000), 569–586. (2000) MR1727271DOI10.1016/S0362-546X(98)00222-3
- Phase-field models with hysteresis, J. Math. Anal. Appl. 252 (2000), 198–219. (2000) MR1797852
- Phase-field systems and vector hysteresis operators, In: Free Boundary Problems: Theory and Applications, II (Chiba, 1999), Gakkōtosho, Tokyo, 2000, pp. 295–310. (2000) MR1794360
- 10.1016/S0921-4526(01)01001-8, Physica B 306 (2001), 185–190. (2001) DOI10.1016/S0921-4526(01)01001-8
- 10.1002/mma.288, Math. Methods Appl. Sci. 25 (2002), 309–325. (2002) MR1875705DOI10.1002/mma.288
- One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions, Adv. Math. Sci. Appl. 13 (2003), 695–712. (2003) MR2029939
- 10.1137/S0036141001387604, SIAM J. Math. Anal. 34 (2002), 409–434. (2002) MR1951781DOI10.1137/S0036141001387604
- Existence and asymptotic behaviour in phase-field models with hysteresis, In: Lectures on Applied Mathematics (Munich, 1999), Springer, Berlin, 2000, pp. 77–88. (2000) MR1767764
- 10.1006/jdeq.2001.3950, J. Differential Equations 175 (2001), 88–107. (2001) MR1849225DOI10.1006/jdeq.2001.3950
- 10.1023/A:1022333500777, Appl. Math. 45 (2000), 439–468. (2000) MR1800964DOI10.1023/A:1022333500777
- Grundzüge der Thermodynamik, 3. ed, Springer-Verlag, Berlin-New York, 2001. (2001)
- A model for phase transition in pseudoelastic bodies, Il Nuovo Cimento 57B (1980), 283–318. (1980)
- Space Memory Materials, first paperback, K. Otsuka, C. Wayman (eds.), Cambridge University Press, Cambridge, 1999. (1999)
- 10.1007/BF00280411, Arch. Ration. Mech. Anal. 97 (1987), 353–394. (1987) MR0865845DOI10.1007/BF00280411
- 10.1006/jdeq.1996.3216, J. Differential Equations 134 (1997), 46–67. (1997) MR1429091DOI10.1006/jdeq.1996.3216
- 10.1080/03605309308820946, Comm. Partial Differential Equations 18 (1993), 701–727. (1993) MR1214877DOI10.1080/03605309308820946
- 10.1137/S0036141096297698, SIAM J. Math. Anal. 29 (1998), 69–84 (electronic). (1998) MR1617175DOI10.1137/S0036141096297698
- Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994. (1994) Zbl0820.35004MR1329094
- Models of Phase Transitions. Progress in Nonlinear Differential Equations and Their Applications, Vol. 28, Birkhäuser-Verlag, Boston, 1996. (1996) MR1423808
- 10.1016/0020-7225(93)90086-A, Internat J. Engrg. Sci. 31 (1993), 1121–1138. (1993) Zbl0774.73016DOI10.1016/0020-7225(93)90086-A
- Nonlinear Parabolic Equations and Hyperbolic—Parabolic Coupled Systems. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 76, Longman, New York, 1995. (1995) MR1375458
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.