Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein

Applications of Mathematics (2004)

  • Volume: 49, Issue: 4, page 309-341
  • ISSN: 0862-7940

Abstract

top
The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in the phase evolution equation are described by using the mathematical theory of hysteresis operators.

How to cite

top

Klein, Olaf. "Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity." Applications of Mathematics 49.4 (2004): 309-341. <http://eudml.org/doc/33187>.

@article{Klein2004,
abstract = {The asymptotic behaviour for $t \rightarrow \infty $ of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in the phase evolution equation are described by using the mathematical theory of hysteresis operators.},
author = {Klein, Olaf},
journal = {Applications of Mathematics},
keywords = {phase-field system; phase transition; hysteresis operator; thermo-visco-plasticity; asymptotic behaviour; phase transition; long-time behaviour; energy dissipation},
language = {eng},
number = {4},
pages = {309-341},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity},
url = {http://eudml.org/doc/33187},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Klein, Olaf
TI - Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 309
EP - 341
AB - The asymptotic behaviour for $t \rightarrow \infty $ of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in the phase evolution equation are described by using the mathematical theory of hysteresis operators.
LA - eng
KW - phase-field system; phase transition; hysteresis operator; thermo-visco-plasticity; asymptotic behaviour; phase transition; long-time behaviour; energy dissipation
UR - http://eudml.org/doc/33187
ER -

References

top
  1. 10.1016/0022-0396(80)90040-6, J.  Differential Equations 35 (1980), 200–231. (1980) Zbl0415.35018MR0561978DOI10.1016/0022-0396(80)90040-6
  2. 10.1002/pssa.2211250115, Phys. Stat. Sol.  (A) 125 (1991), 179–190. (1991) DOI10.1002/pssa.2211250115
  3. Hysteresis and Phase Transitions, Springer-Verlag, New York, 1996. (1996) MR1411908
  4. Shape Memory Materials and their Applications. Vol.  394–395 of Materials Science Forum, Y. Y. Chu, L. C. Zhao (eds.), Trans Tech Publications, Switzerland, 2002. (2002) 
  5. Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal. 6 (1982), 434–454. (1982) MR0661710
  6. 10.1016/0001-6160(80)90030-9, Acta Met. 28 (1980), 1773–1780. (1980) DOI10.1016/0001-6160(80)90030-9
  7. 10.1007/BF01308772, Z.  Physik  B—Condensed Matter 51 (1983), 177–185. (1983) DOI10.1007/BF01308772
  8. 10.1016/0020-7225(89)90115-8, Internat. J.  Engrg. Sci. 27 (1989), 277–284. (1989) DOI10.1016/0020-7225(89)90115-8
  9. Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. (2002) Zbl0990.80001MR1885252
  10. Shape Memory Alloys, CISM Courses and Lectures, Vol. 351, Springer-Verlag, , 1996. (1996) 
  11. 10.1002/1099-1476(20000710)23:10<909::AID-MMA142>3.0.CO;2-E, Math. Methods Appl. Sci. 23 (2000), 909–922. (2000) MR1765906DOI10.1002/1099-1476(20000710)23:10<909::AID-MMA142>3.0.CO;2-E
  12. Existence results for a phase-field model in one-dimensional thermo-visco-plasticity involving unbounded hysteresis operators, In preparation. 
  13. Outwards pointing hysteresis operators and and asymptotic behaviour of evolution equations, Nonlinear Anal. Real World Appl. 4 (2003), 755–785. (2003) MR1978561
  14. Systems with Hysteresis, Springer-Verlag, Heidelberg, 1989; Russian edition: Nauka, Moscow, 1983. (1989; Russian edition: Nauka, Moscow, 1983) MR0742931
  15. Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Internat. Ser. Math. Sci. Appl. Vol.  8, Gakkōtosho, Tokyo, 1996. (1996) MR2466538
  16. 10.1006/jmaa.1997.5304, J.  Math. Anal. Appl. 209 (1997), 25–46. (1997) MR1444509DOI10.1006/jmaa.1997.5304
  17. 10.1023/A:1023276524286, Appl. Math. 43 (1998), 207–222. (1998) MR1620620DOI10.1023/A:1023276524286
  18. 10.1023/A:1023224507448, Appl. Math. 43 (1998), 173–205. (1998) MR1620624DOI10.1023/A:1023224507448
  19. 10.1016/S0362-546X(98)00222-3, Nonlinear Anal. Ser. A 39 (2000), 569–586. (2000) MR1727271DOI10.1016/S0362-546X(98)00222-3
  20. Phase-field models with hysteresis, J.  Math. Anal. Appl. 252 (2000), 198–219. (2000) MR1797852
  21. Phase-field systems and vector hysteresis operators, In: Free Boundary Problems: Theory and Applications,  II (Chiba, 1999), Gakkōtosho, Tokyo, 2000, pp. 295–310. (2000) MR1794360
  22. 10.1016/S0921-4526(01)01001-8, Physica  B 306 (2001), 185–190. (2001) DOI10.1016/S0921-4526(01)01001-8
  23. 10.1002/mma.288, Math. Methods Appl. Sci. 25 (2002), 309–325. (2002) MR1875705DOI10.1002/mma.288
  24. One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions, Adv. Math. Sci. Appl. 13 (2003), 695–712. (2003) MR2029939
  25. 10.1137/S0036141001387604, SIAM J. Math. Anal. 34 (2002), 409–434. (2002) MR1951781DOI10.1137/S0036141001387604
  26. Existence and asymptotic behaviour in phase-field models with hysteresis, In: Lectures on Applied Mathematics (Munich, 1999), Springer, Berlin, 2000, pp. 77–88. (2000) MR1767764
  27. 10.1006/jdeq.2001.3950, J.  Differential Equations 175 (2001), 88–107. (2001) MR1849225DOI10.1006/jdeq.2001.3950
  28. 10.1023/A:1022333500777, Appl. Math. 45 (2000), 439–468. (2000) MR1800964DOI10.1023/A:1022333500777
  29. Grundzüge der Thermodynamik, 3. ed, Springer-Verlag, Berlin-New York, 2001. (2001) 
  30. A model for phase transition in pseudoelastic bodies, Il Nuovo Cimento 57B (1980), 283–318. (1980) 
  31. Space Memory Materials, first paperback, K. Otsuka, C. Wayman (eds.), Cambridge University Press, Cambridge, 1999. (1999) 
  32. 10.1007/BF00280411, Arch. Ration. Mech. Anal. 97 (1987), 353–394. (1987) MR0865845DOI10.1007/BF00280411
  33. 10.1006/jdeq.1996.3216, J.  Differential Equations 134 (1997), 46–67. (1997) MR1429091DOI10.1006/jdeq.1996.3216
  34. 10.1080/03605309308820946, Comm. Partial Differential Equations 18 (1993), 701–727. (1993) MR1214877DOI10.1080/03605309308820946
  35. 10.1137/S0036141096297698, SIAM J. Math. Anal. 29 (1998), 69–84 (electronic). (1998) MR1617175DOI10.1137/S0036141096297698
  36. Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994. (1994) Zbl0820.35004MR1329094
  37. Models of Phase Transitions. Progress in Nonlinear Differential Equations and Their Applications, Vol. 28, Birkhäuser-Verlag, Boston, 1996. (1996) MR1423808
  38. 10.1016/0020-7225(93)90086-A, Internat J.  Engrg. Sci. 31 (1993), 1121–1138. (1993) Zbl0774.73016DOI10.1016/0020-7225(93)90086-A
  39. Nonlinear Parabolic Equations and Hyperbolic—Parabolic Coupled Systems. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 76, Longman, New York, 1995. (1995) MR1375458

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.