### Analyticity of thermo-elastic semigroups with free boundary conditions

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This paper is concerned with the asymptotic behavior of the finite difference solutions of a class of nonlinear reaction diffusion equations with time delay. By introducing a pair of coupled upper and lower solutions, an existence result of the solution is given and an attractor of the solution is obtained without monotonicity assumptions on the nonlinear reaction function. This attractor is a sector between two coupled quasi-solutions of the corresponding “steady-state” problem, which are obtained...

This paper is concerned with the asymptotic behavior of the finite difference solutions of a class of nonlinear reaction diffusion equations with time delay. By introducing a pair of coupled upper and lower solutions, an existence result of the solution is given and an attractor of the solution is obtained without monotonicity assumptions on the nonlinear reaction function. This attractor is a sector between two coupled quasi-solutions of the corresponding “steady-state" problem, which are...

The asymptotic behaviour for $t\to \infty $ of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

The nonlinear integro-differential system associated with the penetration of a magnetic field into a substance is considered. The asymptotic behavior as $t\to \infty $ of solutions for two initial-boundary value problems are studied. The problem with non-zero conditions on one side of the lateral boundary is discussed. The problem with homogeneous boundary conditions is studied too. The rates of convergence are given. Results presented show the difference between stabilization characters of solutions of these...

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.

Large time behavior of the solution to the nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. Furthermore, the rate of convergence is given. Initial-boundary value problem with mixed boundary conditions is considered.

The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.

In this paper we consider a model of a one-dimensional body where strain depends on the history of stress. We show local existence for large data and global existence for small data of classical solutions and convergence of the displacement, strain and stress to zero for time going to infinity.

The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered...

Perturbed parameters are considered in a hypoplastic model of granular materials. For fixed parameters, the model response to a periodic stress loading and unloading converges to a limit state of strain. The focus of this contribution is the assessment of the change in the limit strain caused by varying model parameters.