Extended Hashin-Shtrikman variational principles

Petr Procházka; Jiří Šejnoha

Applications of Mathematics (2004)

  • Volume: 49, Issue: 4, page 357-372
  • ISSN: 0862-7940

Abstract

top
Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded materials, which are typically present in particulate, layered, or rock bodies. These parameters may be realized in different ways, e.g., by prestressing, temperature changes, effects of wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formulation of elasticity is presented, and the two most important Lagrange’s and Castigliano’s variational principles are formulated in the sequel. Then the classical Hashin-Shtrikman principles are recalled and the involvement of eigenparameters is studied in more detail.

How to cite

top

Procházka, Petr, and Šejnoha, Jiří. "Extended Hashin-Shtrikman variational principles." Applications of Mathematics 49.4 (2004): 357-372. <http://eudml.org/doc/33189>.

@article{Procházka2004,
abstract = {Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded materials, which are typically present in particulate, layered, or rock bodies. These parameters may be realized in different ways, e.g., by prestressing, temperature changes, effects of wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formulation of elasticity is presented, and the two most important Lagrange’s and Castigliano’s variational principles are formulated in the sequel. Then the classical Hashin-Shtrikman principles are recalled and the involvement of eigenparameters is studied in more detail.},
author = {Procházka, Petr, Šejnoha, Jiří},
journal = {Applications of Mathematics},
keywords = {extended Hashin-Shtrikman variational principle; eigenparameter; transformation field analysis; eigenstrains; eigenstresses; effective moduli},
language = {eng},
number = {4},
pages = {357-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extended Hashin-Shtrikman variational principles},
url = {http://eudml.org/doc/33189},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Procházka, Petr
AU - Šejnoha, Jiří
TI - Extended Hashin-Shtrikman variational principles
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 357
EP - 372
AB - Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded materials, which are typically present in particulate, layered, or rock bodies. These parameters may be realized in different ways, e.g., by prestressing, temperature changes, effects of wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formulation of elasticity is presented, and the two most important Lagrange’s and Castigliano’s variational principles are formulated in the sequel. Then the classical Hashin-Shtrikman principles are recalled and the involvement of eigenparameters is studied in more detail.
LA - eng
KW - extended Hashin-Shtrikman variational principle; eigenparameter; transformation field analysis; eigenstrains; eigenstresses; effective moduli
UR - http://eudml.org/doc/33189
ER -

References

top
  1. Numerical methods in structural mechanics, ASCE Press, New York, Thomas Telford, co-publisher, London, 1996. (1996) 
  2. 10.1098/rspa.1992.0063, Proc. Roy. Soc. London. Ser. A 437 (1992), 311–327. (1992) Zbl0748.73007MR1163551DOI10.1098/rspa.1992.0063
  3. 10.1016/S1359-8368(96)00001-7, Composites, Part B 27B (1996), 643–649. (1996) DOI10.1016/S1359-8368(96)00001-7
  4. 10.1016/S0020-7683(98)00181-4, Internat. J. Solids Structures 36 (1999), 3917–3943. (1999) MR1737571DOI10.1016/S0020-7683(98)00181-4
  5. 10.1016/0022-5096(96)00007-5, J.  Mech. Phys. Solids 44 (1996), 497–524. (1996) MR1381396DOI10.1016/0022-5096(96)00007-5
  6. 10.1098/rspa.1957.0133, Proc. Roy. Soc. London, Ser. A 241 (1957), 376–396. (1957) Zbl0079.39606MR0087326DOI10.1098/rspa.1957.0133
  7. 10.1016/0022-5096(62)90004-2, J.  Mech. Phys. Solids 10 (1962), 335–342. (1962) MR0147031DOI10.1016/0022-5096(62)90004-2
  8. 10.1016/0022-5096(62)90005-4, J.  Mech. Phys. Solids 10 (1962), 343–352. (1962) MR0147032DOI10.1016/0022-5096(62)90005-4
  9. 10.1016/0022-5096(92)90003-K, J.  Mech. Phys. Solids 40 (1992), 767–781. (1992) Zbl0760.73077MR1163486DOI10.1016/0022-5096(92)90003-K
  10. New derivation of some elastic extremum principles, Progress in Applied Mechanics. The Prager Anniversary Volume, New York (1963), 99–106. (1963) MR0160359
  11. Determination of composite material elastic and thermoelastic constants, Izv. AN SSSR, Mekhanika Tverdogo Tela 11 (1976), 137–145. (Russian) (1976) 
  12. 10.1016/0022-5096(91)90030-R, J.  Mech. Phys. Solids 39 (1991), 45–71. (1991) MR1085622DOI10.1016/0022-5096(91)90030-R
  13. 10.1016/0377-0427(95)00093-3, J.  Comput. Appl. Math. 63 (1995), 475–480. (1995) MR1365583DOI10.1016/0377-0427(95)00093-3
  14. Behavior of composites on bounded domain, BE Communications 7 (1996), 6–8. (1996) 
  15. 10.1016/S0020-7683(98)00182-6, Internat. J.  Solids Structures 36 (1999), 3943–3976. (1999) DOI10.1016/S0020-7683(98)00182-6
  16. 10.1016/0022-5096(77)90022-9, J.  Mech. Phys. Solids 25 (1977), 185–202. (1977) Zbl0363.73014DOI10.1016/0022-5096(77)90022-9
  17. 10.1016/0022-5096(91)90031-I, J.  Mech. Phys. Solids 39 (1991), 73–86. (1991) Zbl0734.73053MR1085623DOI10.1016/0022-5096(91)90031-I

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.