Travelling fronts for multidimensional nonlinear transport equations

Hartmut R. Schwetlick

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 4, page 523-550
  • ISSN: 0294-1449

How to cite

top

Schwetlick, Hartmut R.. "Travelling fronts for multidimensional nonlinear transport equations." Annales de l'I.H.P. Analyse non linéaire 17.4 (2000): 523-550. <http://eudml.org/doc/78500>.

@article{Schwetlick2000,
author = {Schwetlick, Hartmut R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear transport equation; reaction-diffusion equation; strictly monotone travelling fronts},
language = {eng},
number = {4},
pages = {523-550},
publisher = {Gauthier-Villars},
title = {Travelling fronts for multidimensional nonlinear transport equations},
url = {http://eudml.org/doc/78500},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Schwetlick, Hartmut R.
TI - Travelling fronts for multidimensional nonlinear transport equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 4
SP - 523
EP - 550
LA - eng
KW - nonlinear transport equation; reaction-diffusion equation; strictly monotone travelling fronts
UR - http://eudml.org/doc/78500
ER -

References

top
  1. [1] Aronson D.G., The asymptotic speed of propagation of a simple epidemic, in: Fitzgibbon W.E., Walker H.F. (Eds.), Nonlinear Diffusion, Res. Notes Math., Vol. 14, Pitman, 1977, pp. 1-23. Zbl0361.35011MR490046
  2. [2] Aronson D.G., Weinberger H.F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: Goldstein J. (Ed.), Partial Differential Equations and Related Topics, Lect. Notes Math., Vol. 446, Springer, 1975, pp. 5- 49. Zbl0325.35050MR427837
  3. [3] Aronson D.G., Weinberger H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math.30 (1978) 33-76. Zbl0407.92014MR511740
  4. [4] Berestycki H., Larrouturou B., A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model, J. Reine Angew. Math.396 (1989) 14-40. Zbl0658.35036MR988546
  5. [5] Berestycki H., Nirenberg L., Travelling fronts in cylinders, Ann. Inst. Henri Poincaré, Anal. Non Linéaire9 (5) (1992) 497-572. Zbl0799.35073MR1191008
  6. [6] Diekmann O., Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations33 (1979) 58-73. Zbl0377.45007MR540817
  7. [7] Fisher R.A., The advance of advantageous genes, Ann. Eugenics7 (1937) 355-369. Zbl63.1111.04JFM63.1111.04
  8. [8] Golse F., Lions P.-L., Perthame B., Sentis R., Regularity of the moments of the solution of a transport equation, J. Functional Analysis79 (1) (1988) 110-125. Zbl0652.47031MR923047
  9. [9] Hadeler K.P., Travelling fronts for correlated random walks, Can. Appl. Math. Q.2 (1) (1994) 27-43. Zbl0802.60065MR1271437
  10. [10] Hadeler K.P., Reaction transport systems in biological modelling, in: Mathematics Inspired by Biology, Lect. Notes Math., Vol. 1714, Springer, 1999. Zbl1002.92506MR1737306
  11. [11] Kolmogorov A.N., Petrovsky I.G., Piscounov N.S., Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Ser. Int., Sect. A, Math. et Mecan.1 (6) (1937) 1-25; English Transl. in: Pelcé R. (Ed.), Dynamics of Curved Fronts, Academic Press, 1988, p. 105-130. Zbl0018.32106
  12. [12] Othmer H.G., Dunbar S.R., Alt W., Models of dispersal in biological systems, J. Math. Biol.26 (3) (1988) 263-298. Zbl0713.92018MR949094
  13. [13] Schumacher K., Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math.316 (1980) 54-70. Zbl0419.45004MR581323
  14. [14] Thieme H.R., Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math.306 (1979) 94-121. Zbl0395.45010MR524650
  15. [15] Weinberger H.F., Asymptotic behavior of a model in population genetics, in: Chadam J.M. (Ed.), Nonlinear Partial Differential Equations and Applications, Lect. Notes Math., Vol. 648, Springer, 1978, pp. 47-96. Zbl0383.35034MR490066
  16. [16] Weinberger H.F., Long-time behavior of a class of biological models, SIAM J. Math. Anal.13 (3) (1982) 353-396. Zbl0529.92010MR653463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.