Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators

János Karátson

Applications of Mathematics (2005)

  • Volume: 50, Issue: 3, page 277-290
  • ISSN: 0862-7940

Abstract

top
A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space.

How to cite

top

Karátson, János. "Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators." Applications of Mathematics 50.3 (2005): 277-290. <http://eudml.org/doc/33221>.

@article{Karátson2005,
abstract = {A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space.},
author = {Karátson, János},
journal = {Applications of Mathematics},
keywords = {conjugate gradient method; superlinear convergence; mesh independence; preconditioning operator; conjugate gradient method; mesh independence; preconditioning operator},
language = {eng},
number = {3},
pages = {277-290},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators},
url = {http://eudml.org/doc/33221},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Karátson, János
TI - Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 277
EP - 290
AB - A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space.
LA - eng
KW - conjugate gradient method; superlinear convergence; mesh independence; preconditioning operator; conjugate gradient method; mesh independence; preconditioning operator
UR - http://eudml.org/doc/33221
ER -

References

top
  1. Iterative Solution Methods, Cambridge University Press, Cambridge, 1994. (1994) Zbl0813.15021MR1276069
  2. 10.1023/A:1016694031362, Numer. Algorithms 25 (2000), 1–22. (2000) MR1827142DOI10.1023/A:1016694031362
  3. 10.1081/NFA-120006694, Numer. Funct. Anal. Optmization 23 (2002), 285–302. (2002) MR1914497DOI10.1081/NFA-120006694
  4. 10.1007/s00211-004-0557-2, Numer. Math. 99 (2004), 197–223, SpringerLink DOI: 10.1007/s00211-004-0557-2 (electronic). (2004) MR2107430DOI10.1007/s00211-004-0557-2
  5. 10.1137/0714055, SIAM J.  Numer. Anal. 14 (1977), 792–829. (1977) MR0502000DOI10.1137/0714055
  6. 10.1137/0714064, SIAM J.  Numer. Anal. 14 (1977), 950–970. (1977) Zbl0382.65052MR0502001DOI10.1137/0714064
  7. 10.1137/S0036142999363188, SIAM J.  Numer. Anal. 39 (2001), 300–329, Electronic. (2001) MR1860727DOI10.1137/S0036142999363188
  8. 10.1137/0710092, SIAM J.  Numer. Anal. 10 (1973), 1103–1120. (1973) MR0341890DOI10.1137/0710092
  9. 10.1137/0704002, SIAM J.  Numer. Anal. 4 (1967), 10–26. (1967) Zbl0154.40302MR0217987DOI10.1137/0704002
  10. 10.1137/0723004, SIAM J.  Numer. Anal. 23 (1986), 44–57. (1986) MR0821905DOI10.1137/0723004
  11. 10.1016/0196-8858(90)90007-L, Adv. Appl. Math. 11 (1990), 109–163. (1990) MR1053227DOI10.1016/0196-8858(90)90007-L
  12. Numerical solution of nonlinear elliptic problems via preconditioning operators. Theory and applications, Advances in Computation, Vol.  11, NOVA Science Publishers, Huntington, 2002. (2002) MR2106499
  13. 10.1137/0716031, SIAM J.  Numer. Anal. 16 (1979), 380–384. (1979) Zbl0414.65029MR0530475DOI10.1137/0716031
  14. Classes of linear operators, Vol.  I, Operator Theory: Advances and Applications, Vol. 49, Birkhäuser-Verlag, Basel, 1990. (1990) MR1130394
  15. Iterative methods of solving linear problems in Hilbert space, Natl. Bur. Stand.; Appl. Math. Ser. 39 (1954), 71–103. (1954) MR0066563
  16. 10.6028/jres.049.044, J.  Res. Natl. Bur. Stand., Sect.  B 49 (1952), 409–436. (1952) MR0060307DOI10.6028/jres.049.044
  17. On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set, Czechoslovak Math.  J. 14(89) (1964), 386–393. (Russian) (1964) Zbl0166.37703MR0170088
  18. 10.1137/S0036142901384277, SIAM J.  Numer. Anal. 41 (2003), 1242–1262. (2003) MR2034879DOI10.1137/S0036142901384277
  19. 10.1137/0730040, SIAM J.  Numer. Anal. 30 (1993), 790–812. (1993) MR1220653DOI10.1137/0730040
  20. Sobolev gradients and differential equations, Lecture Notes in Math., No.  1670, Springer-Verlag, Berlin, 1997. (1997) Zbl0935.35002MR1624197
  21. 10.1137/S1064827597317016, SIAM J.  Sci. Comput. 20 (1999), 1778–1793. (1999) MR1694683DOI10.1137/S1064827597317016
  22. Parallel fictitious domain method for a non-linear elliptic Neumann boundary value problem. Czech-US Workshop in Iterative Methods and Parallel Computing, Part  I (Milovy, 1997), Numer. Linear Algebra Appl. 6 (1999), 51–60. (1999) MR1684652
  23. Functional Analysis, McGraw-Hill, New York, 1991. (1991) Zbl0867.46001MR1157815
  24. Vorlesungen über Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1982. (1982) Zbl0483.47001
  25. Linear Partial Differential Equations of Second Order, Tankönyvkiadó, Budapest, 1983. (Hungarian) (1983) 
  26. 10.1137/1019071, SIAM Rev. 19 (1977), 490–501. (1977) Zbl0358.65088MR0438732DOI10.1137/1019071
  27. Methods of Moments in Applied Mathematics, Gordon and Breach, New York, 1965. (1965) Zbl0196.47601MR0184400
  28. 10.1137/0717002, SIAM J.  Numer. Anal. 17 (1980), 14–17. (1980) MR0559456DOI10.1137/0717002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.