Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators
Applications of Mathematics (2005)
- Volume: 50, Issue: 3, page 277-290
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKarátson, János. "Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators." Applications of Mathematics 50.3 (2005): 277-290. <http://eudml.org/doc/33221>.
@article{Karátson2005,
abstract = {A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space.},
author = {Karátson, János},
journal = {Applications of Mathematics},
keywords = {conjugate gradient method; superlinear convergence; mesh independence; preconditioning operator; conjugate gradient method; mesh independence; preconditioning operator},
language = {eng},
number = {3},
pages = {277-290},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators},
url = {http://eudml.org/doc/33221},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Karátson, János
TI - Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 277
EP - 290
AB - A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space.
LA - eng
KW - conjugate gradient method; superlinear convergence; mesh independence; preconditioning operator; conjugate gradient method; mesh independence; preconditioning operator
UR - http://eudml.org/doc/33221
ER -
References
top- Iterative Solution Methods, Cambridge University Press, Cambridge, 1994. (1994) Zbl0813.15021MR1276069
- 10.1023/A:1016694031362, Numer. Algorithms 25 (2000), 1–22. (2000) MR1827142DOI10.1023/A:1016694031362
- 10.1081/NFA-120006694, Numer. Funct. Anal. Optmization 23 (2002), 285–302. (2002) MR1914497DOI10.1081/NFA-120006694
- 10.1007/s00211-004-0557-2, Numer. Math. 99 (2004), 197–223, SpringerLink DOI: 10.1007/s00211-004-0557-2 (electronic). (2004) MR2107430DOI10.1007/s00211-004-0557-2
- 10.1137/0714055, SIAM J. Numer. Anal. 14 (1977), 792–829. (1977) MR0502000DOI10.1137/0714055
- 10.1137/0714064, SIAM J. Numer. Anal. 14 (1977), 950–970. (1977) Zbl0382.65052MR0502001DOI10.1137/0714064
- 10.1137/S0036142999363188, SIAM J. Numer. Anal. 39 (2001), 300–329, Electronic. (2001) MR1860727DOI10.1137/S0036142999363188
- 10.1137/0710092, SIAM J. Numer. Anal. 10 (1973), 1103–1120. (1973) MR0341890DOI10.1137/0710092
- 10.1137/0704002, SIAM J. Numer. Anal. 4 (1967), 10–26. (1967) Zbl0154.40302MR0217987DOI10.1137/0704002
- 10.1137/0723004, SIAM J. Numer. Anal. 23 (1986), 44–57. (1986) MR0821905DOI10.1137/0723004
- 10.1016/0196-8858(90)90007-L, Adv. Appl. Math. 11 (1990), 109–163. (1990) MR1053227DOI10.1016/0196-8858(90)90007-L
- Numerical solution of nonlinear elliptic problems via preconditioning operators. Theory and applications, Advances in Computation, Vol. 11, NOVA Science Publishers, Huntington, 2002. (2002) MR2106499
- 10.1137/0716031, SIAM J. Numer. Anal. 16 (1979), 380–384. (1979) Zbl0414.65029MR0530475DOI10.1137/0716031
- Classes of linear operators, Vol. I, Operator Theory: Advances and Applications, Vol. 49, Birkhäuser-Verlag, Basel, 1990. (1990) MR1130394
- Iterative methods of solving linear problems in Hilbert space, Natl. Bur. Stand.; Appl. Math. Ser. 39 (1954), 71–103. (1954) MR0066563
- 10.6028/jres.049.044, J. Res. Natl. Bur. Stand., Sect. B 49 (1952), 409–436. (1952) MR0060307DOI10.6028/jres.049.044
- On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set, Czechoslovak Math. J. 14(89) (1964), 386–393. (Russian) (1964) Zbl0166.37703MR0170088
- 10.1137/S0036142901384277, SIAM J. Numer. Anal. 41 (2003), 1242–1262. (2003) MR2034879DOI10.1137/S0036142901384277
- 10.1137/0730040, SIAM J. Numer. Anal. 30 (1993), 790–812. (1993) MR1220653DOI10.1137/0730040
- Sobolev gradients and differential equations, Lecture Notes in Math., No. 1670, Springer-Verlag, Berlin, 1997. (1997) Zbl0935.35002MR1624197
- 10.1137/S1064827597317016, SIAM J. Sci. Comput. 20 (1999), 1778–1793. (1999) MR1694683DOI10.1137/S1064827597317016
- Parallel fictitious domain method for a non-linear elliptic Neumann boundary value problem. Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997), Numer. Linear Algebra Appl. 6 (1999), 51–60. (1999) MR1684652
- Functional Analysis, McGraw-Hill, New York, 1991. (1991) Zbl0867.46001MR1157815
- Vorlesungen über Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1982. (1982) Zbl0483.47001
- Linear Partial Differential Equations of Second Order, Tankönyvkiadó, Budapest, 1983. (Hungarian) (1983)
- 10.1137/1019071, SIAM Rev. 19 (1977), 490–501. (1977) Zbl0358.65088MR0438732DOI10.1137/1019071
- Methods of Moments in Applied Mathematics, Gordon and Breach, New York, 1965. (1965) Zbl0196.47601MR0184400
- 10.1137/0717002, SIAM J. Numer. Anal. 17 (1980), 14–17. (1980) MR0559456DOI10.1137/0717002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.