On convergence of gradient-dependent integrands

Martin Kružík

Applications of Mathematics (2007)

  • Volume: 52, Issue: 6, page 529-543
  • ISSN: 0862-7940

Abstract

top
We study convergence properties of { v ( u k ) } k if v C ( m × n ) , | v ( s ) | C ( 1 + | s | p ) , 1 < p < + , has a finite quasiconvex envelope, u k u weakly in W 1 , p ( Ω ; m ) and for some g C ( Ω ) it holds that Ω g ( x ) v ( u k ( x ) ) d x Ω g ( x ) Q v ( u ( x ) ) d x as k . In particular, we give necessary and sufficient conditions for L 1 -weak convergence of { det u k } k to det u if m = n = p .

How to cite

top

Kružík, Martin. "On convergence of gradient-dependent integrands." Applications of Mathematics 52.6 (2007): 529-543. <http://eudml.org/doc/33307>.

@article{Kružík2007,
abstract = {We study convergence properties of $\lbrace v(\nabla u_k)\rbrace _\{k\in \mathbb \{N\}\}$ if $v\in C(\mathbb \{R\}^\{m\times n\})$, $|v(s)|\le C(1+|s|^p)$, $1<p<+\infty $, has a finite quasiconvex envelope, $u_k\rightarrow u$ weakly in $W^\{1,p\} (\Omega ;\mathbb \{R\}^m)$ and for some $g\in C(\Omega )$ it holds that $\int _\Omega g(x)v(\nabla u_k(x))\mathrm \{d\}x\rightarrow \int _\Omega g(x) Qv(\nabla u(x))\mathrm \{d\}x$ as $k\rightarrow \infty $. In particular, we give necessary and sufficient conditions for $L^1$-weak convergence of $\lbrace \det \nabla u_k\rbrace _\{k\in \mathbb \{N\}\}$ to $\det \nabla u$ if $m=n=p$.},
author = {Kružík, Martin},
journal = {Applications of Mathematics},
keywords = {bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence; bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence},
language = {eng},
number = {6},
pages = {529-543},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On convergence of gradient-dependent integrands},
url = {http://eudml.org/doc/33307},
volume = {52},
year = {2007},
}

TY - JOUR
AU - Kružík, Martin
TI - On convergence of gradient-dependent integrands
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 6
SP - 529
EP - 543
AB - We study convergence properties of $\lbrace v(\nabla u_k)\rbrace _{k\in \mathbb {N}}$ if $v\in C(\mathbb {R}^{m\times n})$, $|v(s)|\le C(1+|s|^p)$, $1<p<+\infty $, has a finite quasiconvex envelope, $u_k\rightarrow u$ weakly in $W^{1,p} (\Omega ;\mathbb {R}^m)$ and for some $g\in C(\Omega )$ it holds that $\int _\Omega g(x)v(\nabla u_k(x))\mathrm {d}x\rightarrow \int _\Omega g(x) Qv(\nabla u(x))\mathrm {d}x$ as $k\rightarrow \infty $. In particular, we give necessary and sufficient conditions for $L^1$-weak convergence of $\lbrace \det \nabla u_k\rbrace _{k\in \mathbb {N}}$ to $\det \nabla u$ if $m=n=p$.
LA - eng
KW - bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence; bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence
UR - http://eudml.org/doc/33307
ER -

References

top
  1. Non-uniform integrability and generalized Young measures, J.  Convex Anal. 4 (1997), 129–147. (1997) MR1459885
  2. A version of the fundamental theorem for Young measures, In: PDEs and Continuum Models of Phase Transition. Lect. Notes Phys. 344, M. Rascle, D. Serre, M. Slemrod (eds.), Springer-Verlag, Berlin, 1989, pp. 207–215. (1989) Zbl0991.49500MR1036070
  3. 10.1016/0022-1236(84)90041-7, J.  Funct. Anal. 58 (1984), 225–253. (1984) MR0759098DOI10.1016/0022-1236(84)90041-7
  4. Lower semicontinuity of multiple integrals and the biting lemma, Proc. R.  Soc. Edinb. 114  A (1990), 367–379. (1990) MR1055554
  5. 10.1016/0001-8708(80)90023-7, Adv. Math. 37 (1980), 16–26. (1980) MR0585896DOI10.1016/0001-8708(80)90023-7
  6. Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. (1989) Zbl0703.49001MR0990890
  7. 10.1007/BF01214424, Commun. Math. Phys. 108 (1987), 667–689. (1987) MR0877643DOI10.1007/BF01214424
  8. Linear Operators. Part  I, Interscience, New York, 1967. (1967) 
  9. General Topology. 2nd  ed, PWN, Warszawa, 1976. (Polish) (1976) MR0500779
  10. Lower semicontinuity of surface energies, Proc. R.  Soc. Edinb. 120  A (1992), 99–115. (1992) Zbl0757.49013MR1149987
  11. 10.1137/S0036141096306534, SIAM J. Math. Anal. 29 (1998), 736–756. (1998) MR1617712DOI10.1137/S0036141096306534
  12. 10.1016/S0294-1449(00)00108-6, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 C (2000), 193–217. (2000) MR1753093DOI10.1016/S0294-1449(00)00108-6
  13. Oscillations and concentrations in sequences of gradients, ESAIM Control Optim. Calc. Var (to appear). (to appear) MR2375752
  14. 10.1007/BF00375279, Arch. Ration. Mech. Anal. 115 (1991), 329–365. (1991) MR1120852DOI10.1007/BF00375279
  15. 10.1137/0523001, SIAM J.  Math. Anal. 23 (1992), 1–19. (1992) MR1145159DOI10.1137/0523001
  16. 10.1007/BF02921593, J.  Geom. Anal. 4 (1994), 59–90. (1994) MR1274138DOI10.1007/BF02921593
  17. On the control of an evolutionary equilibrium in micromagnetics, Optimization with multivalued mappings. Springer Optim. Appl., Vol. 2, Springer-Verlag, New York, 2006, pp. 143–168. (2006) MR2243541
  18. 10.1007/s002080050277, Math. Ann. 313 (1999), 653–710. (1999) Zbl0924.49012MR1686943DOI10.1007/s002080050277
  19. On the measures of DiPerna and Majda, Math. Bohem. 122 (1997), 383–399. (1997) MR1489400
  20. 10.1080/01630569908816908, Numer. Funct. Anal. Optimization 20 (1999), 511–530. (1999) MR1704958DOI10.1080/01630569908816908
  21. Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. (1966) Zbl0142.38701MR0202511
  22. Higher integrability of determinants and weak convergence in  L 1 , J. Reine Angew. Math. 412 (1990), 20–34. (1990) MR1078998
  23. Variational models for microstructure and phase transisions, Lect. Notes Math. 1713, Springer-Verlag, Berlin, 1999, pp. 85–210. (1999) MR1731640
  24. Parametrized Measures and Variational Principles, Birkäuser-Verlag, Basel, 1997. (1997) Zbl0879.49017MR1452107
  25. Relaxation in Optimization Theory and Variational Calculus, W.  de  Gruyter, Berlin, 1997. (1997) MR1458067
  26. 10.1080/03605308208820242, Comm. Partial Differ. Equations 7 (1982), 959–1000. (1982) Zbl0496.35058MR0668586DOI10.1080/03605308208820242
  27. Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics. Heriot-Watt Symposium  IV. Res. Notes Math.  39, R. J. Knops (ed.), , San Francisco, 1979. (1979) Zbl0437.35004MR0584398
  28. Mathematical tools for studying oscillations and concentrations: From Young measures to H -measures and their variants, In: Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives. Proceedings of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September  3–9,  2000, N. Antonič et al. (eds.), Springer-Verlag, Berlin, 2002, pp. 1–84. (2002) Zbl1015.35001MR1998790
  29. Young measures, In: Methods of Nonconvex Analysis. Lect. Notes Math.  1446, A. Cellina (ed.), Springer-Verlag, Berlin, 1990, pp. 152–188. (1990) Zbl0742.49010MR1079763
  30. Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. (1972) Zbl0253.49001MR0372708
  31. Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C.  R.  Soc. Sci. Lett. Varsovie, Classe  III 30 (1937), 212–234. (1937) Zbl0019.21901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.