On convergence of gradient-dependent integrands
Applications of Mathematics (2007)
- Volume: 52, Issue: 6, page 529-543
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKružík, Martin. "On convergence of gradient-dependent integrands." Applications of Mathematics 52.6 (2007): 529-543. <http://eudml.org/doc/33307>.
@article{Kružík2007,
abstract = {We study convergence properties of $\lbrace v(\nabla u_k)\rbrace _\{k\in \mathbb \{N\}\}$ if $v\in C(\mathbb \{R\}^\{m\times n\})$, $|v(s)|\le C(1+|s|^p)$, $1<p<+\infty $, has a finite quasiconvex envelope, $u_k\rightarrow u$ weakly in $W^\{1,p\} (\Omega ;\mathbb \{R\}^m)$ and for some $g\in C(\Omega )$ it holds that $\int _\Omega g(x)v(\nabla u_k(x))\mathrm \{d\}x\rightarrow \int _\Omega g(x) Qv(\nabla u(x))\mathrm \{d\}x$ as $k\rightarrow \infty $. In particular, we give necessary and sufficient conditions for $L^1$-weak convergence of $\lbrace \det \nabla u_k\rbrace _\{k\in \mathbb \{N\}\}$ to $\det \nabla u$ if $m=n=p$.},
author = {Kružík, Martin},
journal = {Applications of Mathematics},
keywords = {bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence; bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence},
language = {eng},
number = {6},
pages = {529-543},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On convergence of gradient-dependent integrands},
url = {http://eudml.org/doc/33307},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Kružík, Martin
TI - On convergence of gradient-dependent integrands
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 6
SP - 529
EP - 543
AB - We study convergence properties of $\lbrace v(\nabla u_k)\rbrace _{k\in \mathbb {N}}$ if $v\in C(\mathbb {R}^{m\times n})$, $|v(s)|\le C(1+|s|^p)$, $1<p<+\infty $, has a finite quasiconvex envelope, $u_k\rightarrow u$ weakly in $W^{1,p} (\Omega ;\mathbb {R}^m)$ and for some $g\in C(\Omega )$ it holds that $\int _\Omega g(x)v(\nabla u_k(x))\mathrm {d}x\rightarrow \int _\Omega g(x) Qv(\nabla u(x))\mathrm {d}x$ as $k\rightarrow \infty $. In particular, we give necessary and sufficient conditions for $L^1$-weak convergence of $\lbrace \det \nabla u_k\rbrace _{k\in \mathbb {N}}$ to $\det \nabla u$ if $m=n=p$.
LA - eng
KW - bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence; bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence
UR - http://eudml.org/doc/33307
ER -
References
top- Non-uniform integrability and generalized Young measures, J. Convex Anal. 4 (1997), 129–147. (1997) MR1459885
- A version of the fundamental theorem for Young measures, In: PDEs and Continuum Models of Phase Transition. Lect. Notes Phys. 344, M. Rascle, D. Serre, M. Slemrod (eds.), Springer-Verlag, Berlin, 1989, pp. 207–215. (1989) Zbl0991.49500MR1036070
- 10.1016/0022-1236(84)90041-7, J. Funct. Anal. 58 (1984), 225–253. (1984) MR0759098DOI10.1016/0022-1236(84)90041-7
- Lower semicontinuity of multiple integrals and the biting lemma, Proc. R. Soc. Edinb. 114 A (1990), 367–379. (1990) MR1055554
- 10.1016/0001-8708(80)90023-7, Adv. Math. 37 (1980), 16–26. (1980) MR0585896DOI10.1016/0001-8708(80)90023-7
- Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. (1989) Zbl0703.49001MR0990890
- 10.1007/BF01214424, Commun. Math. Phys. 108 (1987), 667–689. (1987) MR0877643DOI10.1007/BF01214424
- Linear Operators. Part I, Interscience, New York, 1967. (1967)
- General Topology. 2nd ed, PWN, Warszawa, 1976. (Polish) (1976) MR0500779
- Lower semicontinuity of surface energies, Proc. R. Soc. Edinb. 120 A (1992), 99–115. (1992) Zbl0757.49013MR1149987
- 10.1137/S0036141096306534, SIAM J. Math. Anal. 29 (1998), 736–756. (1998) MR1617712DOI10.1137/S0036141096306534
- 10.1016/S0294-1449(00)00108-6, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 C (2000), 193–217. (2000) MR1753093DOI10.1016/S0294-1449(00)00108-6
- Oscillations and concentrations in sequences of gradients, ESAIM Control Optim. Calc. Var (to appear). (to appear) MR2375752
- 10.1007/BF00375279, Arch. Ration. Mech. Anal. 115 (1991), 329–365. (1991) MR1120852DOI10.1007/BF00375279
- 10.1137/0523001, SIAM J. Math. Anal. 23 (1992), 1–19. (1992) MR1145159DOI10.1137/0523001
- 10.1007/BF02921593, J. Geom. Anal. 4 (1994), 59–90. (1994) MR1274138DOI10.1007/BF02921593
- On the control of an evolutionary equilibrium in micromagnetics, Optimization with multivalued mappings. Springer Optim. Appl., Vol. 2, Springer-Verlag, New York, 2006, pp. 143–168. (2006) MR2243541
- 10.1007/s002080050277, Math. Ann. 313 (1999), 653–710. (1999) Zbl0924.49012MR1686943DOI10.1007/s002080050277
- On the measures of DiPerna and Majda, Math. Bohem. 122 (1997), 383–399. (1997) MR1489400
- 10.1080/01630569908816908, Numer. Funct. Anal. Optimization 20 (1999), 511–530. (1999) MR1704958DOI10.1080/01630569908816908
- Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. (1966) Zbl0142.38701MR0202511
- Higher integrability of determinants and weak convergence in , J. Reine Angew. Math. 412 (1990), 20–34. (1990) MR1078998
- Variational models for microstructure and phase transisions, Lect. Notes Math. 1713, Springer-Verlag, Berlin, 1999, pp. 85–210. (1999) MR1731640
- Parametrized Measures and Variational Principles, Birkäuser-Verlag, Basel, 1997. (1997) Zbl0879.49017MR1452107
- Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin, 1997. (1997) MR1458067
- 10.1080/03605308208820242, Comm. Partial Differ. Equations 7 (1982), 959–1000. (1982) Zbl0496.35058MR0668586DOI10.1080/03605308208820242
- Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics. Heriot-Watt Symposium IV. Res. Notes Math. 39, R. J. Knops (ed.), , San Francisco, 1979. (1979) Zbl0437.35004MR0584398
- Mathematical tools for studying oscillations and concentrations: From Young measures to -measures and their variants, In: Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives. Proceedings of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September 3–9, 2000, N. Antonič et al. (eds.), Springer-Verlag, Berlin, 2002, pp. 1–84. (2002) Zbl1015.35001MR1998790
- Young measures, In: Methods of Nonconvex Analysis. Lect. Notes Math. 1446, A. Cellina (ed.), Springer-Verlag, Berlin, 1990, pp. 152–188. (1990) Zbl0742.49010MR1079763
- Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. (1972) Zbl0253.49001MR0372708
- Generalized curves and the existence of an attained absolute minimum in the calculus of variations, C. R. Soc. Sci. Lett. Varsovie, Classe III 30 (1937), 212–234. (1937) Zbl0019.21901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.